Skip to main content
Log in

Propagation Properties of Nanoscale Three-Dimensional Plasmonic Waveguide Based on Hybrid of Two Fundamental Planar Optical Metal Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a nanoscale three-dimensional plasmonic waveguide (TDPW), created by depositing an Ag stripe on a SiO2 layer with an Ag substrate, is introduced and theoretically investigated at visible and telecom wavelengths. By applying the effective index method and finite-difference time-domain numerical simulations, the authors find that the propagation properties of surface plasmon polaritons (SPPs) in the TDPW, including the propagation length and beam width, are mainly decided by the core (the SiO2 layer just under the Ag stripe) itself, due to the much stronger localization of SPPs in the core than in the two side claddings (the SiO2 layer without the covered Ag stripe). And propagating SPPs in the TDPW are strongly confined in the core region, even with a very small waveguide cross section. Furthermore, based on the stronger localization of propagation SPPs in the TDPW, two kinds of bending waveguides, oblique bending and 90° circular bending waveguides, are also investigated. For wavelength of 1550 nm, the 90° circular bending guide with a minimum radius as small as 2.6 μm show nearly zero radiation loss, even with a small waveguide cross section of 70 × 80 nm2. The proposed TDPW is suitable for planar integration and provides a possible way for constructing various nanoscale counterparts of conventional integrated devices such as splitter, resonator, sensor, and optical switch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnes W, Dereux A, Ebbesen T (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830. https://doi.org/10.1038/nature01937

    Article  CAS  PubMed  Google Scholar 

  2. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193. https://doi.org/10.1126/science.1114849

    Article  CAS  PubMed  Google Scholar 

  3. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91. https://doi.org/10.1038/nphoton.2009.282

    Article  CAS  Google Scholar 

  4. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232. https://doi.org/10.1038/nmat852

    Article  CAS  PubMed  Google Scholar 

  5. Dickson RM, Lyon LA (2000) Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B 104(26):6095–6098. https://doi.org/10.1021/jp001435b

    Article  CAS  Google Scholar 

  6. Weeber JC, Krenn JR, Dereux A, Lamprecht B, Lacroute Y, Goudonnet JP (2001) Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys Rev B 64(4):045411. https://doi.org/10.1103/PhysRevB.64.045411

    Article  CAS  Google Scholar 

  7. Tanaka K, Tanaka M (2003) Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl Phys Lett 82(8):1158–1160. https://doi.org/10.1063/1.1557323

    Article  CAS  Google Scholar 

  8. Veronis G, Fan S (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87(13):131102. https://doi.org/10.1063/1.2056594

    Article  CAS  Google Scholar 

  9. Kusunoki F, Yotsuya T, Takahara J, Kobayashi T (2005) Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Appl Phys Lett 86(21):211101. https://doi.org/10.1063/1.1935034

    Article  CAS  Google Scholar 

  10. Pile DFP, Ogawa T, Gramotnev DK, Matsuzaki Y, Vernon KC, Yamaguchi K, Okamoto T, Haraguchi M, Fukui M (2005) Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 87(26):261114. https://doi.org/10.1063/1.2149971

    Article  CAS  Google Scholar 

  11. Liu L, Han Z, He S (2005) Novel surface plasmon waveguide for high integration. Opt Exp 13(17):6645–6650. https://doi.org/10.1364/OPEX.13.006645

    Article  Google Scholar 

  12. Wang B, Wang GP (2004) Metal heterowaveguides for nanometric focusing of light. Appl Phys Lett 85:3559–3601

    Google Scholar 

  13. Wang B, Wang GP (2007) Planar metal heterostructures for nanoplasmonic waveguides. Appl Phys Lett 90(1):013114. https://doi.org/10.1063/1.2430682

    Article  CAS  Google Scholar 

  14. Wang B, Wang GP (2005) Simulations of nanoscale interferometer and array focusing by metal heterowaveguides. Opt Exp 13(26):10558–10563. https://doi.org/10.1364/OPEX.13.010558

    Article  Google Scholar 

  15. Chen L, Wang B, Wang GP (2006) High efficiency 90 bending metal heterowaveguides for nanophotonic integration. Appl Phys Lett 89(24):243120. https://doi.org/10.1063/1.2404596

    Article  CAS  Google Scholar 

  16. Kusunoki F, Yotsuya T, Takahara J (2006) Confinement and guiding of two-dimensional optical waves by low-refractive-index cores. Opt Express 14(12):5651–5656. https://doi.org/10.1364/OE.14.005651

    Article  CAS  PubMed  Google Scholar 

  17. Pile DFP, Gramotnev DK (2009) Channel plasmon–polariton in a triangular groove on a metal surface. Opt Lett 29:1069–1071

    Article  Google Scholar 

  18. Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95(4):046802. https://doi.org/10.1103/PhysRevLett.95.046802

    Article  CAS  PubMed  Google Scholar 

  19. Bozhevolnyi S, Volkov V, Devaux E, Laluet J, Ebbesen T (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511. https://doi.org/10.1038/nature04594

    Article  CAS  PubMed  Google Scholar 

  20. Moreno E, Rodrigo SG, Bozhevolnyi SI, Martín-Moreno L, García-Vidal FJ (2008) Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett 100:023901

    Article  Google Scholar 

  21. Bian Y, Zheng Z, Zhao X, Liu L, Su Y, Zhu J, Zhou T (2013) Modal properties of triangular metal groove/wedge based hybrid plasmonic structures for laser actions at deep-subwavelength scale. Opt Commun 297:102–108. https://doi.org/10.1016/j.optcom.2013.01.075

    Article  CAS  Google Scholar 

  22. Steinberger B, Hohenau A, Ditlbacher H, Stepanov AL, Drezet A, Aussenegg FR, Leitner A, Krenn JR (2006) Dielectric stripes on gold as surface plasmon waveguides. Appl Phys Lett 88(9):094104. https://doi.org/10.1063/1.2180448

    Article  CAS  Google Scholar 

  23. Krasavin AV, Zayats AV (2007) Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 90(21):211101. https://doi.org/10.1063/1.2740485

    Article  CAS  Google Scholar 

  24. Tsilipakos O, Yioultsis TV, Kriezis EE (2009) Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides. J Appl Phys 106(9):093109. https://doi.org/10.1063/1.3256139

    Article  CAS  Google Scholar 

  25. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang ANDX (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500. https://doi.org/10.1038/nphoton.2008.131

    Article  CAS  Google Scholar 

  26. Chu HS, Li EP, Bai P, Hegde R (2010) Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl Phys Lett 96(22):221103. https://doi.org/10.1063/1.3437088

    Article  CAS  Google Scholar 

  27. Sorger VJ, Ye Z, Oulton RF, Wang Y, Bartal G, Yin X, Zhang X (2011) Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat Commun 2:331. https://doi.org/10.1038/ncomms1315

    Article  CAS  Google Scholar 

  28. Chu H, Bai P, Li E, Hoefer WRJ (2011) Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Plasmonics 6(3):591–597. https://doi.org/10.1007/s11468-011-9239-y

    Article  CAS  Google Scholar 

  29. Chu H, Akimov YA, Bai P, Li E (2011) Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale. J Opt Soc Am B 28(12):2895–2901. https://doi.org/10.1364/JOSAB.28.002895

    Article  CAS  Google Scholar 

  30. Bian Y, Gong Q (2014) Highly confined guiding of low-loss plasmon waves in hybrid metal-dielectric slot waveguides. Nanotechnology 25(34):345201. https://doi.org/10.1088/0957-4484/25/34/345201

    Article  CAS  PubMed  Google Scholar 

  31. Zhang B, Bian Y, Ren L, Guo F, Tang S, Mao Z, Liu X, Sun J, Gong J, Guo X, Huang TJ (2017) Hybrid dielectric-loaded nanoridge plasmonic waveguide for low loss light transmission at the subwavelength scale. Sci Rep 7:40479. https://doi.org/10.1038/srep40479,1-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaminow IP, Mammel WL, Weber HP (1974) Metal-clad optical waveguides: analytical and experimental study. Appl Opt 13(2):396–405. https://doi.org/10.1364/AO.13.000396

    Article  CAS  PubMed  Google Scholar 

  33. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Nature Science Foundation of China (Grant Nos. 61575145, 61205166, and J1210061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Lin.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Ye, H., Wang, Q. et al. Propagation Properties of Nanoscale Three-Dimensional Plasmonic Waveguide Based on Hybrid of Two Fundamental Planar Optical Metal Waveguides. Plasmonics 13, 1615–1621 (2018). https://doi.org/10.1007/s11468-017-0670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0670-6

Keywords

Navigation