Skip to main content
Log in

Magneto-Electric Double Fano Resonances in Hybrid Split Ring/Disk Hetero-Cavity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we conceive and demonstrate the magneto-electric double Fano resonances of a hetero-cavity composed of Si disk and Au split ring, where Si disk can provide additional magnetic responses besides electric responses. The interference between electric and magnetic responses in proposed hetero-cavity gives rise to magneto-electric double Fano resonances with magnetic and electric near-field enhancements. Dipole radiative enhancement is used to analyze magnetic and electric responses of hetero-cavity and the spectral features of hetero-cavity can be used to quantitatively characterize by coupled oscillator model. And the spectral tunability of magneto-electric double Fano resonances is investigated, highlighting a potential for applications in low-loss sensing and nanophotonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

  2. Hulst HCVD, Twersky V (1957) Light scattering by small particles. Wiley, New York 47:87–94

  3. Geffrin JM, García-Cámara B, Gómez-Medina R, Albella P, Froufe-Pérez L, Eyraud C, Litman A, Vaillon R, González F, Nieto-Vesperinas M (2012) Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat Commun 3:542–555

    Article  Google Scholar 

  4. Evlyukhin AB, Novikov SM, Zywietz U, Eriksen RL, Reinhardt C, Bozhevolnyi SI, Chichkov BN (2012) Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett 12:3749

    Article  CAS  Google Scholar 

  5. Fu YH, Kuznetsov AI, Miroshnichenko AE, Yu YF, Luk'yanchuk B (2012) Directional visible light scattering by silicon nanoparticles. Nat Commun 4:1527

    Article  Google Scholar 

  6. Moreno F, Nietovesperinas M, Saenz JJ (2011) Electric and magnetic dipolar response of germanium nanospheres: interference effects; scattering anisotropy; and optical forces. Physics 5:30–32

    Google Scholar 

  7. García-Etxarri A, Gómez-Medina R, Froufe-Pérez LS, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz JJ (2011) Strong magnetic response of submicron silicon particles in the infrared. Opt Express 19:4815–4826

    Article  Google Scholar 

  8. Hopkins B, Filonov DS, Miroshnichenko AE, Monticone F, Alù A, Kivshar YS (2015) Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances. Acs Photon 2:724

    Article  CAS  Google Scholar 

  9. Filonov DS, Slobozhanyuk AP, Krasnok AE, Belov PA, Nenasheva EA, Hopkins B, Miroshnichenko AE, Kivshar YS (2014) Nearfield mapping of Fano resonances in all-dielectric oligomers. Appl Phys Lett 104:226–234

    Article  Google Scholar 

  10. Miroshnichenko AE, Kivshar YS (2012) Fano resonances in all dielectric oligomers. Nano Lett 12:6459–6463

    Article  CAS  Google Scholar 

  11. Chong KE, Hopkins B, Staude I, Miroshnichenko AE, Dominguez J, DeckerM NDN, Brener I, Kivshar YS (2014) Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10:1985–1990

    Article  CAS  Google Scholar 

  12. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657

    Article  CAS  Google Scholar 

  13. Fang ZY, Cai JY, Yan ZB, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11:4475

    Article  CAS  Google Scholar 

  14. Wang H, Liu P, Ke YL, Su YK, Zhang L, Xu NS, Deng SZ, Chen HJ (2015) Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement. ACS Nano 9:436

    Article  CAS  Google Scholar 

  15. Ci X, Wu B, Liu Y, Chen G, Wu E, Zeng H (2014) Magnetic-based Fano resonance of hybrid silicon-gold nanocavities in the near-infrared region. Opt Express 22:23749–23758

    Article  CAS  Google Scholar 

  16. Miroshnichenko AE, Luk'Yanchuk B, Maier SA, Kivshar YS (2012) Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 6:837

    Article  CAS  Google Scholar 

  17. Wang WD, Wang YL, Shi Y, Liu YJ (2016) Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells. Plasmonics 12:1537–1543

    Article  Google Scholar 

  18. Wang WD, Zhao X, Zheng L, Xiong L, Liu YJ, Lin H (2016) Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells. Plasmonics. https://doi.org/10.1007/s11468-017-0507-3

    Article  Google Scholar 

  19. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  20. Palik ED (1985) Handbook of optical constants of solids. Academic Press: Boston, MA, 33:189

    Chapter  Google Scholar 

  21. Clark AW, Sheridan AK, Glidle A, Cumming DRS, Cooper JM (2007) Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl Phys Lett 91:1667

    Article  Google Scholar 

  22. Sheridan AK, Clark AW, Glidle A, Cooper JM, Cumming DRS (2007) Multiple plasmon resonances from gold nanostructures. Appl Phys Lett 90:1065

    Article  Google Scholar 

  23. Cai D, Huang Y, Wang J, Chen J, Chen Z, Liu S (2015) Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry. J Phys Chem C 119:4252–4260

    Article  CAS  Google Scholar 

  24. Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Capasso F (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 10:4680–4685

    Article  CAS  Google Scholar 

  25. Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138

    Article  CAS  Google Scholar 

  26. Liu SD, Yang YB, Chen ZH, Wang WJ, Fei HM, Zhang MJ, Wang YC (2013) Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry. J Phys Chem C 117:14218–14228

    Article  CAS  Google Scholar 

  27. Nazir A, Panaro S, Zaccaria RP, Liberale C, Angelis FD, Toma A (2014) Fano coil-type resonance for magnetic hot-spot generation. Nano Lett 14:3166–3171

    Article  CAS  Google Scholar 

  28. Shafiei F, Monticone F, Hartsfield T, Alù A, Li XQ (2013) A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol 8:95–99

    Article  CAS  Google Scholar 

  29. Sheikholeslami SN, Garcíaetxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Lett 11:3927–3934

    Article  CAS  Google Scholar 

  30. Hao F, Sonnefraud Y, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  31. Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643

    Article  CAS  Google Scholar 

  32. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4:1664

    Article  CAS  Google Scholar 

  33. Fan P, Yu Z, Fan S, Brongersma ML (2014) Optical Fano resonance of an individual semiconductor nanostructure. Nat Mater 13:471

    Article  CAS  Google Scholar 

  34. Luk’Yanchuk BS, Miroshnichenko AE, Kivshar YS (2013) Fano resonances and topological optics: an interplay of far- and near-field interference phenomena. J Opt 15:3001

    Article  Google Scholar 

  35. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10:2694–2701

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the key project of the Natural Science Foundation of Tianjin City under Grant No 10JCZDJC23600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Gao, Y., Huang, Z. et al. Magneto-Electric Double Fano Resonances in Hybrid Split Ring/Disk Hetero-Cavity. Plasmonics 13, 1541–1547 (2018). https://doi.org/10.1007/s11468-017-0662-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0662-6

Keywords

Navigation