Skip to main content
Log in

Multispectral Plasmon-Induced Transparency Based on Asymmetric Metallic Nanoslices Array Metasurface

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a 3D metasurface structure with unsymmetrical metallic slices array. The tunable plasmon-induced transparency (PIT) effects and different electric field mode distributions could be realized by modulating the structure parameters and angle of incidence. The radiative and dark elements of the asymmetric metallic slices unit cell structure are analyzed. The transmission spectra and the electric fields distributions are studied by the finite element method (FEM). We demonstrate that PIT phenomena based on those metasurface array structures may have applications as tunable sensors and filters in nanophotonics and integrated optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valentine J, Zhang S, Zentgraf T, Avila EU, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379

    Article  CAS  Google Scholar 

  2. Zheludev NI, Kivshar YS (2012) Ultrafast acousto-magneto-plasmonics. Nat Mater 11:917–924

    Article  CAS  Google Scholar 

  3. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  CAS  Google Scholar 

  4. Edwards B, Alù A, Silveirinha MG, Engheta NR (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901

    Article  Google Scholar 

  5. Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13:139–150

    Article  CAS  Google Scholar 

  6. Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339:1232009

    Article  Google Scholar 

  7. Khorasaninejad M, Chen WT, Devlin RC, Oh J, ZhuAY CF (2016) Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352:1190–1194

    Article  CAS  Google Scholar 

  8. Veysi M, Guclu C, Boyraz O, Capolino F (2015) Thin anisotropic metasurfaces for simultaneous light focusing and polarization manipulation. J Opt Soc Am B 32:318–323

    Article  CAS  Google Scholar 

  9. Wang W, Guo Z, Zhou K, Sun Y, Shen F, Li Y, Qu S, Liu S (2015) Polarization-independent longitudinal multi-focusing metalens. Opt Express 23:29855–29866

    Article  Google Scholar 

  10. Shao H, Chen C, Wang J, Pan L, Sang T (2017) Metalenses based on the non-parallel double-slit arrays. J Phys D 50(38):4001–4260

    Article  Google Scholar 

  11. Xiong L, Chen L, Yang L, Zhang X, PuM ZZ, Ma X, Wang Y, Hong M, Luo X (2016) Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2:e1601102

    Article  Google Scholar 

  12. Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N (2016) Performing mathematical operations with metamaterials. Science 343:160–163

    Article  Google Scholar 

  13. Li R, Guo Z, WangW ZJ, Zhang A, Liu J, Qu S, Gao J (2014) Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators. Opt Express 22:27968–27975

    Article  Google Scholar 

  14. Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J, Lukyanchuk B, Yang JKW, Qiu CW (2016) Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev 10(500–509):269

    Google Scholar 

  15. Wang B, Quan B, He J, Xie Z, Wang X, Li J, Kan Q, Zhang Y (2016) Wavelength de-multiplexing metasurface hologram. Sci Rep 6:35657

    Article  CAS  Google Scholar 

  16. Boller KJ, Imamoğlu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593–2596

    Article  CAS  Google Scholar 

  17. Chen J, Li Z, Yue S, Xiao J, Gong Q (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12:2494–2498

    Article  CAS  Google Scholar 

  18. Wang J, Niu Y, Liu D, ZD H, Sang T, Gao S (2017) Tunable Plasmon-induced transparency effect in MIM side-coupled trapezoid cavities system. Plasmonics. https://doi.org/10.1007/s11468-017-0551-z

    Article  Google Scholar 

  19. Singh R, Rockstuhl C, Lederer F, Zhang W (2009) Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Phys Rev B 79:085111

    Article  Google Scholar 

  20. Yun B, Hu G, Zhang R, Cui Y (2014) Design of a compact and high sensitive refraction index sensor base on metal-insulator-metal plasmonic Bragg grating. Opt Express 22:28662–28670

    Article  Google Scholar 

  21. Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia RA (2013) Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers. Nano Lett 13:6287–6291

    Article  CAS  Google Scholar 

  22. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  Google Scholar 

  23. Liu D, Sun Y, Fan Q, Mei M, Wang J, Pan Y, Lu J (2016) Tunable plasmonically induced transparency with asymmetric multi-rectangle resonators. Plasmonics 11(6):1621–1628

    Article  CAS  Google Scholar 

  24. Wang J, Sun L, ZD H, Liang X, Liu C (2014) Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide. AIP Adv 4:123006

    Article  Google Scholar 

  25. Tang B, Wang J, Xia X, Liang X, Ci S, Qu S (2015) Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators. Appl Phys Express 8:032202

    Article  CAS  Google Scholar 

  26. Zhao X, Yuan C, Zhu L, Yao J (2016) Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nano 8:15273–15280

    CAS  Google Scholar 

  27. Sun C, Dong Z, Si J, Deng X (2017) Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies. Opt Express 25:1242–1250

    Article  CAS  Google Scholar 

  28. Wan M, Song Y, Zhang L, Zhou F (2015) Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings. Opt Express 23:27361–27273

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 11504139), the Natural Science Foundation of Jiangsu Province (Grant No. BK20140167), the China Postdoctoral Science Foundation (2017M611693), and the Training Programs of Innovation and Entrepreneurship for Undergraduates of Jiangnan University (Grant No. 2016336Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, J., Xiao, T. et al. Multispectral Plasmon-Induced Transparency Based on Asymmetric Metallic Nanoslices Array Metasurface. Plasmonics 13, 1535–1540 (2018). https://doi.org/10.1007/s11468-017-0661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0661-7

Keywords

Navigation