Skip to main content
Log in

Simulation of Some Plasmonic Biosensors for Detection of Hemoglobin Concentration in Human Blood

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Three recently published plasmonic biosensors based on a birefringent solid-core or a partial-solid-core microstructured optical fiber are simulated for detection of hemoglobin concentration in human blood. For a larger value of the number of holes n h but for the same value of the gold radius, the resonance spectral width and the difference between maximal amplitude sensitivity and resonant wavelengths are decreased, when the refractive index of the analyte is n a = 1.357. Also, the loss and maximum of the amplitude sensitivity are increased in the same conditions. At the resonant wavelength λ = 0.6496 μm for the devices with n h = 14, 17, and 35 holes and n a = 1.357, the hemoglobin concentration is close to the mean value (157.5 g/l) of a man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Popescu VA, Puscas NN, Perrone G (2012) Power absorption efficiency of a new microstructured plasmon optical fiber. J Opt Soc Am B 29(11):3039–3046. https://doi.org/10.1364/JOSAB.29.003039

    Article  CAS  Google Scholar 

  2. Popescu VA, Puscas NN, Perrone G (2014) Strong power absorption in a new microstructured holey fiber-based plasmonic sensor. J Opt Soc Am B 31(5):1062–1070. https://doi.org/10.1364/JOSAB.31.001062

    Article  CAS  Google Scholar 

  3. Popescu VA, Puscas NN, Perrone G (2017) Simulation of the sensing performance of a plasmonic biosensor based on birefringent solid-core microstructured optical fiber. Plasmonics 12(3):905–911. https://doi.org/10.1007/s11468-016-0342-y

    Article  CAS  Google Scholar 

  4. Popescu VA (2016) Application of a plasmonic biosensor for detection of human blood groups. Plasmonics. https://doi.org/10.1007/s11468-016-0440-x

    Article  Google Scholar 

  5. Popescu VA 2017 application of a plasmonic biosensor for detection of human-liver tissues. Plasmonics. https://doi.org/10.1007/s11468-017-0546-9

    Article  Google Scholar 

  6. Popescu VA, Puscas NN, Perrone G (2017) Plasmonic biosensor based on birefringent partial-solid-core microstructured optical fiber. J Opt 19(7):075004. https://doi.org/10.1088/2040-8986/aa73fe

    Article  CAS  Google Scholar 

  7. Sharma AK, Rajan R, Gupta BD (2007) Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor. Opt Commun 274(2):320–326. https://doi.org/10.1016/j.optcom.2007.02.030

    Article  CAS  Google Scholar 

  8. Verma RK, Sharma AK, Gupta BD (2008) Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt Commun 281(6):1486–1491. https://doi.org/10.1016/j.optcom.2007.11.007

    Article  CAS  Google Scholar 

  9. Ghatak AK, Thyagarajan K (1999) Introduction to fiber optics. Cambridge University Press, Cambridge

    Google Scholar 

  10. Vial A, Grimault AS, Macías D, Barchiesi D, Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416. https://doi.org/10.1103/PhysRevB.71.085416

    Article  CAS  Google Scholar 

  11. Shalabney A, Abdulhalim I (2012) Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt Lett 37(7):1175–1177. https://doi.org/10.1364/OL.37.001175

    Article  CAS  PubMed  Google Scholar 

  12. Saunders JE, Sanders C, Chen H, Look HP (2016) Refractive indices of common solvents and solutions at 1550 nm. Appl Opt 55(4):947–953. https://doi.org/10.1364/AO.55.000947

    Article  CAS  PubMed  Google Scholar 

  13. Zhernovaya O, Sydoruk O, Tuchin V, Douplik A (2011) The refractive index of human hemoglobin in the visible range. Phys Med Biol 56(13):4013–4021. https://doi.org/10.1088/0031-9155/56/13/017

    Article  CAS  PubMed  Google Scholar 

  14. Sharma AK (2013) Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations. J Appl Phys 114(4):044701. https://doi.org/10.1063/1.4816272

    Article  CAS  Google Scholar 

  15. Sharma AK (2015) Model of a plasmonic phase interrogation probe for optical sensing of hemoglobin in blood samples. Sens Imaging 16(1):12. https://doi.org/10.1007/s11220-015-0112-5

    Article  Google Scholar 

  16. Prahl S 1999 Optical absorption of hemoglobin. http://omlc.ogi.edu/spectra/hemoglobin/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Popescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, V.A. Simulation of Some Plasmonic Biosensors for Detection of Hemoglobin Concentration in Human Blood. Plasmonics 13, 1507–1511 (2018). https://doi.org/10.1007/s11468-017-0657-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0657-3

Keywords

Navigation