Skip to main content
Log in

Circular Nanocavity in Ultrathin c-Si Solar Cell for Efficient Light Absorption

  • Published:
Plasmonics Aims and scope Submit manuscript

A Correction to this article was published on 07 November 2017

This article has been updated

Abstract

In this work, the effect of circular nanocavity on light trapping in a c-Si solar cell was studied by finite difference time domain (FDTD) simulation. The structure of the solar cell was considered to be Si3N4/c-Si/Ag, where the Ag layer was pattered and conformal growth of Si and Si3N4 was considered. The absorption spectra in the thin Si layer were determined and found 40 times higher at the infrared region (beyond 800 nm). For qualitative analysis, the short-circuit current of the solar cell was determined computationally by AM 1.5G solar illumination and found to be 2.1 times higher in the case of nanocavity as that compared to un-patterned solar cell. The enhancement in absorption in the solar cell is attributed to the different plasmonic modes coupled in the thin c-Si layer. The incident angle-dependent study was performed to observe the effect on enhancement in wide-angle incidence. The thickness-dependent study confirms 2.1 to 1.75 times enhancement in short-circuit current in 100- to 250-nm-thick c-Si layer. Therefore, this observation suggests that this structure has good prospect in achieving high conversion efficiency while reducing the device cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 07 November 2017

    The original version of this article unfortunately contained a mistake. Author name Roy Sandipta should read Sandipta Roy.

References

  1. Wang W, Zhang J, Che X, Qin G (2016) Large absorption enhancement in ultrathin solar cells patterned by metallic nanocavity arrays. Sci Rep 6:34219. https://doi.org/10.1038/srep34219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arvind S, Torres P, Tscharner R et al (1999) Photovoltaic technology: the case for thin-film solar. Cells 5428:692–699. https://doi.org/10.1126/science.285.5428.692

    Article  CAS  Google Scholar 

  3. Wang KX, Yu Z, Liu V et al (2012) Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett 12:1616–1619. https://doi.org/10.1021/nl204550q

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Stokes N, Jia B et al (2014) Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci Rep 4:1–6. https://doi.org/10.1038/srep04939

    Article  CAS  Google Scholar 

  5. Bozzola A, Liscidini M, Andreani LC (2012) Light trapping in thin film solar cells with sub-wavelength photonic crystal patterns: In Transparent Optical Networks (ICTON), 2012 14th International Conference. IEEE pp. 1-4. 2012.https://doi.org/10.1109/ICTON.2012.6254404

  6. Islam K, Imtiaz F, Kemal A, Nayfeh A (2015) Comparative study of thin film n-i-p a-Si: H solar cells to investigate the effect of absorber layer thickness on the plasmonic enhancement using gold nanoparticles. Sol Energy 120:257–262. https://doi.org/10.1016/j.solener.2015.07.018

    Article  CAS  Google Scholar 

  7. Mandal P, Sharma S (2016) Progress in plasmonic solar cell efficiency improvement: a status review. Renew Sust Energ Rev 65:537–552. https://doi.org/10.1016/j.rser.2016.07.031

    Article  CAS  Google Scholar 

  8. Zhang Y, Stokes N, Jia B, et al (2014) Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Scientific reports. Sci Rep. https://doi.org/10.1038/srep04939

  9. Baryshnikova KV, Petrov MI, Babicheva VE, Belov PA (2016) Plasmonic and silicon spherical nanoparticle antireflective coatings. Sci Rep 6:22136. https://doi.org/10.1038/srep22136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tanabe K (2016) A simple optical model well explains plasmonic-nanoparticle-enhanced spectral photocurrent in optically thin solar cells. Nanoscale Res Lett 11:236. https://doi.org/10.1186/s11671-016-1449-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pfeiffer TV, Ortiz-Gonzalez J, Santbergen R et al (2014) Plasmonic nanoparticle films for solar cell applications fabricated by size-selective aerosol deposition. Energy Procedia 60:3–12. https://doi.org/10.1016/j.egypro.2014.12.335

    Article  CAS  Google Scholar 

  12. Reineck P, Lee GP, Brick D et al (2012) A solid-state plasmonic solar cell via metal nanoparticle self-assembly. Adv Mater 24:4750–4755. https://doi.org/10.1002/adma.201200994

    Article  CAS  PubMed  Google Scholar 

  13. Wei CY, Lin CH, Hsiao HT et al (2013) Efficiency improvement of HIT solar cells on p-Type si wafers. Materials (Basel) 6:5440–5446. https://doi.org/10.3390/ma6115440

    Article  CAS  Google Scholar 

  14. Adachi D, Hernandez JL, Yamamoto K (2015) Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl Phys Lett 107:105–108. https://doi.org/10.1063/1.4937224

    Article  CAS  Google Scholar 

  15. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213. https://doi.org/10.1038/nmat2629

    Article  CAS  PubMed  Google Scholar 

  16. Ferry VE, Polman A, Atwater HA (2011) Modeling light trapping in nanostructured solar cells. ACS Nano 5:10055–10064. https://doi.org/10.1021/nn203906t

    Article  CAS  PubMed  Google Scholar 

  17. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517. https://doi.org/10.1038/ncomms1528

    Article  CAS  PubMed  Google Scholar 

  18. Ferry VE, Verschuuren MA, Li HBT et al (2010) Light trapping in ultrathin plasmonic solar cells. Opt Express 18:A237. https://doi.org/10.1364/OE.18.00A237

    Article  CAS  PubMed  Google Scholar 

  19. Ferry VE, Munday JN, Atwater HA (2010) Design considerations for plasmonic photovoltaics. Adv Mater 22:4794–4808. https://doi.org/10.1002/adma.201000488

    Article  CAS  PubMed  Google Scholar 

  20. Saeta PN, Ferry VE, Pacifici D et al (2009) How much can guided modes enhance absorption in thin solar cells? Opt Express 17:20975–20990. https://doi.org/10.1364/OE.17.020975

    Article  CAS  PubMed  Google Scholar 

  21. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793. https://doi.org/10.1364/OE.16.021793

    Article  CAS  PubMed  Google Scholar 

  22. Detert D (2009) Plasmonic nanostructuredesign for efficient light coupling into solar cells. Nano Lett. 12:4391–4397. https://doi.org/10.1021/nl8022548

    Article  CAS  Google Scholar 

  23. Stuart HR, Hall DG (1996) Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl Phys Lett 69:2327–2329. https://doi.org/10.1063/1.117513

    Article  CAS  Google Scholar 

  24. Derkacs D, Lim SH, Matheu P et al (2006) Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89:1–4. https://doi.org/10.1063/1.2336629

    Article  Google Scholar 

  25. Yao Y, Yao J, Narasimhan VK et al (2012) Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat Commun 3:664. https://doi.org/10.1038/ncomms1664

    Article  CAS  PubMed  Google Scholar 

  26. Han SE, Chen G (2010) Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett 10:1012–1015. https://doi.org/10.1021/nl904187m

    Article  CAS  PubMed  Google Scholar 

  27. Zhu J, Hsu CM, Yu Z et al (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10:1979–1984. https://doi.org/10.1021/nl9034237

    Article  CAS  PubMed  Google Scholar 

  28. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087. https://doi.org/10.1021/nl100161z

    Article  CAS  PubMed  Google Scholar 

  29. Yu Z, Raman A, Fan S (2010) Limit of nanophotonic light-trapping in solar cells. Conf Rec IEEE Photovolt Spec Conf 18:76–78. https://doi.org/10.1109/PVSC.2010.5614248

    Article  Google Scholar 

  30. Lin C, Povinelli ML (2009) Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Opt Express 17:19371. https://doi.org/10.1364/OE.17.019371

    Article  CAS  PubMed  Google Scholar 

  31. Zhu J, Yu Z, Burkhard GF et al (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 9:279–282. https://doi.org/10.1021/nl802886y

    Article  CAS  PubMed  Google Scholar 

  32. Hu L, Chen G (2007) Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett 7:3249–3252. https://doi.org/10.1021/nl071018b

    Article  CAS  PubMed  Google Scholar 

  33. Palik ED (1991) Handbook of optical constants of solids II. Academic, Orlando, FL

  34. Mo L, Yang L, Lee EH, He S (2015) High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics. Plasmonics 10:529–538. https://doi.org/10.1007/s11468-014-9837-6

    Article  CAS  Google Scholar 

  35. Prabhathan P, Murukeshan VM (2016) Surface plasmon polariton-coupled waveguide back reflector in thin-film silicon solar cell. Plasmonics 11:253–260. https://doi.org/10.1007/s11468-015-0045-9

    Article  CAS  Google Scholar 

  36. Li X, Zhang X, Yu Y et al (2016) Influences of nanostructure arrays on light absorption in amorphous silicon thin-film solar cells. Plasmonics 11:1073–1079. https://doi.org/10.1007/s11468-015-0144-7

    Article  CAS  Google Scholar 

  37. Nesterenko D V., Hayashi S, Aazou S, et al (2017) Absorption enhancement in thin-film solar cells with perforated holes. Plasmonics pp. 1–7. https://doi.org/10.1109/t-ed.1982.20700 https://doi.org/10.1007/s11468-017-0591-4

  38. Yablonovitch E (1982) Statistical ray optics. J Opt Soc Am 72:899. https://doi.org/10.1364/JOSA.72.000899

    Article  Google Scholar 

  39. Green MA (2002) Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog Photovolt Res Appl 10:235–241. https://doi.org/10.1002/pip.404

    Article  CAS  Google Scholar 

  40. Yablonovitch E, Cody GD (1982) Intensity enhancement in textured optical sheets for solar-cells. IEEE Trans Electron Devices 29:300–305. https://doi.org/10.1109/t-ed.1982.20700

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. S. P. Dttagupta and Prof. S. Ganguly, Department of Electrical Engineering, IIT Bombay, for accessing the CST microwave studio and Lumerical. The author is also thankful to Arnab Pattanayak, CRNTS, IIT Bombay, for the fruitful discussion in the result and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandipta Roy.

Additional information

The original article has been corrected. Author name Roy Sandipta should read Sandipta Roy.

Electronic Supplementary Material

.

ESM 1

(DOCX 104 kb)

.

ESM 2

(PPTX 40866 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S. Circular Nanocavity in Ultrathin c-Si Solar Cell for Efficient Light Absorption. Plasmonics 13, 1499–1504 (2018). https://doi.org/10.1007/s11468-017-0656-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0656-4

Keywords

Navigation