Skip to main content
Log in

Gain-Assisted Magneto-Optical Rotation in a Four-Level Quantum System Near a Plasmonic Nanostructure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose and theoretically demonstrate a mechanism to achieve a gain-assisted magneto optical rotation (MOR) of a linearly polarized probe beam in a double V–type closed-loop atomic system. The quantum system is considered to be placed in the proximity of a plasmonic nanostructure which can produce quantum interference between decay channels of the quantum system. We also apply a linearly polarized control beam and a microwave beam to the system. It is shown that manipulating the intensity of the microwave beam and relative phase of the applied beams results in well-optimizing optical properties of the system where by proper choice of these parameters the atomic medium becomes birefringent gain media. Induced birefringence can be reinforced by increasing the intensity of the magnetic field and quantum interference coefficient. It is found, compared with the absence of the plasmonic nanostructure, the presence of the plasmonic nanostructure causes the gain-assisted MOR to occur at much smaller magnetic field. Hence, we propose that such a gain-assisted MOR can have potential application in detecting quantum interference effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huard S (1997) Polarization of Light. Wiley, New York

    Google Scholar 

  2. Klyshko DN (1997) Polarization of light: Fourth-order effects and polarization-squeezed states. J Exp Theor Phys 84:1065

    Article  Google Scholar 

  3. Damask JN (2005) Polarization Optics in Telecommunications. Springer, New York

    Google Scholar 

  4. Klimov AB, Sánchez-Soto LL, Yustas EC, Söderholm J, Björk G (2005) Distance-based degrees of polarization for a quantum field. Phys Rev A 72:033813

    Article  CAS  Google Scholar 

  5. Kumar A, Ghatak A (2011) Polarization of Light with Applications in Optical Fibers. SPIE-International Society for Optical Engineering, Bellingham

    Book  Google Scholar 

  6. Zhao Y, Alù A (2011) Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 84:205428

    Article  CAS  Google Scholar 

  7. Iskhakov TS, Agafonov IN, Chekhova MV, Leuchs G (2012) Polarization-Entangled Light Pulses of 105 Photons. Phys Rev Lett 109:150502

    Article  CAS  PubMed  Google Scholar 

  8. Ginzburg P, Rodríguez-Fortuño FJ, Wurtz G, Zayats AV (2013) Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Optics Express 21(12):14907–14917

    Article  CAS  PubMed  Google Scholar 

  9. Li W, Coppens ZJ, Besteiro LV, Wang W, Govorov AO, Valentine J (2015) Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nature Communications 6:8379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Connerade JP (1998) Highly Excited Atoms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Budker D, Jackson Kimball DF (2013) Optical Magnetometry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. Bouchiat MA, Bouchiat C (1997) Parity violation in atoms. Rep Prog Phys 60:1351–1396

    Article  CAS  Google Scholar 

  13. Zvezdin AK, Kotov VA (1997) Modern Magnetooptics and Magnetooptical Materials. Taylor and Francis Group, New York

    Book  Google Scholar 

  14. Sugano S, Kojima N (eds) (2000) Magneto-Optics. Springer-Verlag, Berlin

    Google Scholar 

  15. Budker D, Gawlik W, Kimball DF, Rochester SM, Yashchuk VV, Weis A (2002) Resonant nonlinear magnetooptical effects in atoms. Rev Mod Phys 74:1153–1201

    Article  CAS  Google Scholar 

  16. Faraday M (1855) Experimental Research in Electricity. Taylor & Francis 3:1–26

    Google Scholar 

  17. Voigt W (1901) Über das elektrische Analogon des Zeemaneffektes. Ann. Phys 309:197–208

    Article  Google Scholar 

  18. Cotton A, Mouton H (1911) Sur la biréfringence magnétique des liquides purs. Comparaison avec le phénomène électro-optique de Kerr. J Phys Theory Appl 1:5–52

    Article  Google Scholar 

  19. Macaluso D, Corbino OM (1898) Sopra una nuova azione che la luce subisce attraversando alcuni vapori metallici in un campo magnetico. Nuovo Cimento 8:257–258

    Article  Google Scholar 

  20. Macaluso D, Corbino OM (1898) Sulla relazione tra il fenomeno di Zeeman e la rotazione magnetica anomala del piano di polarizzazione della luce. Nuovo Cimento 9:384–389

    Article  Google Scholar 

  21. Patnaik AK, Agarwal GS (2000) Laser field induced birefringence and enhancement of magneto-optical rotation. Opt Commun 179:97

    Article  CAS  Google Scholar 

  22. Patnaik AK, Agarwal GS (2001) Coherent control of magneto-optical rotation in inhomogeneous broadened medium. Opt Commun 199:127

    Article  CAS  Google Scholar 

  23. Petrosyan D, Malakyan YP (2004) Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration. Phys Rev A 70:023822

    Article  CAS  Google Scholar 

  24. Wang B, Li S, Ma J, Wang H, Peng KC, Xiao M (2006) Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency. Phys Rev A 73:051801R

    Article  CAS  Google Scholar 

  25. Li S, Wang B, Yang X, Han Y, Wang H, Xiao M, Peng KC (2006) Controlled polarization rotation of an optical field in multi-Zeeman sublevel atoms. Phys Rev A 74:033821

    Article  CAS  Google Scholar 

  26. Chen SJ, Mei HH, Ni WT (2007) Q & A Experiment to Search for Vacuum Dichroism, Pseudoscalar-Photon Interaction and Millicharged Fermions. Mod Phys Lett A 22:2815

    Article  Google Scholar 

  27. Pandey K, Wasan A, Natarajan V (2008) Coherent control of magneto-optic rotation. J Phys B At Mol Opt Phys 41:225503

    Article  CAS  Google Scholar 

  28. Zavattini E, Zavattini G, Ruoso G, Raiteri G, Polacco E, Milotti E, Lozza V, Karuza M, Gastaldi U, Di Domenico G, Della Valle F, Cimino R, Carusotto S, Cantatore G, Bregant M (2008) New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum. Phys Rev D 77:032006

    Article  CAS  Google Scholar 

  29. Zigdon T, Wilson-Gordon AD, Guttikonda S, Bahr EJ, Neitzke O, Rochester SM, Budker D (2010) Nonlinear magneto-optical rotation in the presence of a radio-frequency field. OPTICS EXPRESS 18(25):25494–25508

    Article  CAS  PubMed  Google Scholar 

  30. Khanbekyan A, Novikova I, Welch GR (2012) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur Phys J D 66:278

    Article  CAS  Google Scholar 

  31. Hombo N, Taniguchi S, Sugimura S, Fujita K, Mitsunaga M (2012) Electromagnetically induced polarization rotation in Na vapor. J Opt Soc Am B 29:1717

    Article  CAS  Google Scholar 

  32. Mortezapour A, Saleh A, Mahmoudi M (2013) Birefringence enhancement via quantum interference in the presence of a static magnetic field. Laser Phys 23:065201

    Article  CAS  Google Scholar 

  33. Zhang W, Qi Q, Zhou J, Chen L (2014) Mimicking Faraday rotation to sort the orbital angular momentum of light. Phys Rev Lett 112:153601

    Article  CAS  PubMed  Google Scholar 

  34. Shi S, Ding D-S, Zhou ZY, Li Y, Zhang W, Shi BS (2015) Magnetic-field-induced rotation of light with orbital angular momentum. Applied Physics Letters 106:261110

    Article  CAS  Google Scholar 

  35. Kumar P, Deb B, Dasgupta S (2016) Probing vacuum-induced coherence via magneto-optical rotation in molecular systems. Phys Rev A 93:063826

    Article  CAS  Google Scholar 

  36. Matsubara M, Schmehl A, Mannhart J, Schlom DG, Fiebig M (2012) Giant third-order magneto-optical rotation in ferromagnetic EuO. Phys Rev B 86:195127

    Article  CAS  Google Scholar 

  37. Martinez JC, Jalil MBA, Tan SG (2013) Optical Faraday rotation with graphene. Journal of Applied Physics 113:17B529

    Article  CAS  Google Scholar 

  38. Mortezapour A, Ghaderi Goran Abad M, Mahmoudi (2015) Magneto-optical rotation in a GaAs quantum well waveguide. J Opt Soc Am B 32:1338

    Article  CAS  Google Scholar 

  39. Yao X, Tokman M, Belyanin A (2015) Strong magneto-optical effects due to surface states in threedimensional topological insulators. OPTICS EXPRESS 23:795

    Article  CAS  PubMed  Google Scholar 

  40. Mortezapour A, Ghaderi Goran Abad M, Ahmadi Borji M (2016) M Magneto-optical rotation in the diamond nitrogen-vacancy center. Laser Phys Lett 13:055202

    Article  CAS  Google Scholar 

  41. Raether H (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, Berlin

    Book  Google Scholar 

  42. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824

    Article  CAS  PubMed  Google Scholar 

  43. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Adv Mater 13:1501

    Article  CAS  Google Scholar 

  44. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189

    Article  CAS  PubMed  Google Scholar 

  45. Pendry JB (2000) Negative Refraction Makes a Perfect Lens. Phys Rev Lett 85:3966

    Article  CAS  PubMed  Google Scholar 

  46. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through hole arrays in metallic films. Nature 391:667

    Article  CAS  Google Scholar 

  47. Gu Y, Wang L, Ren P, Zhang J, Zhang T, Xu JP, Zhu SY, Gong Q (2012) Intrinsic Quantum Beats of Atomic Populations and Their Nanoscale Realization Through Resonant Plasmonic Antenna. Plasmonics 7:33–38

    Article  Google Scholar 

  48. Wang L, Gu Y, Chen H, Zhang JY, Cui Y, Gerardot BD, Gong Q (2013) Polarized linewidth-controllable doubletrapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity. Sci Rep 3:2879

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen H, Ren J, Gu Y, Zhao D, Zhang J, Gong Q (2015) Nanoscale Kerr Nonlinearity Enhancement Using Spontaneously Generated Coherence in Plasmonic Nanocavity. Sci. Rep 5:18315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang B, Wang J, Xia X, Liang X, Ci S, Qu S (2015) Plasmonic-induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators. Applied Physics Express 8:032202

    Article  CAS  Google Scholar 

  51. Shang XJ, Zhai X, Li XF, Wang LL, Wang BX, Liu GD (2016) Realization of Graphene-Based Tunable Plasmon-Induced Transparency by the Dipole-Dipole Coupling. Plasmonics 11:419–423

    Article  CAS  Google Scholar 

  52. Chang DE, Sorensen AS, Hemmer PR, Lukin MD (2006) Quantum Optics with Surface Plasmons. Phys Rev Lett 97:053002

    Article  CAS  PubMed  Google Scholar 

  53. Govorov AO, Bryant GW, Zhang W, Skeini T, Lee J, Kotov NA, Slocik JM, Naik RR (2006) Exciton−Plasmon Interaction and Hybrid Excitons in Semiconductor−Metal Nanoparticle Assemblies. Nano Lett 6:984

    Article  CAS  Google Scholar 

  54. Chang DE et al (2007) A single-photon transistor using nanoscale surface plasmons. Nature Phys 3:807–812

    Article  CAS  Google Scholar 

  55. Yannopapas V, Vitanov NV (2007) Spontaneous emission of a two-level atom placed within clusters of metallic nanoparticles. J Phys Condens Matter 19:096210

    Article  CAS  Google Scholar 

  56. Colas des Francs G, Girard C, Laroche T, Leveque G, Martin OJF (2007) Theory of molecular excitation and relaxation near a plasmonic device. J Chem Phys 127:034701

    Article  CAS  PubMed  Google Scholar 

  57. Chen GY, Chen YN, Chuu DS (2008) Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire. Opt Lett 33:2212

    Article  PubMed  Google Scholar 

  58. Chen YN, Chen GY, Chuu DS, Brandes T (2009) Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics. Phys Rev A 79:033815

    Article  CAS  Google Scholar 

  59. Trügler A, Hohenester U (2008) Strong coupling between a metallic nanoparticle and a single molecule. Phys Rev B 77:115403

    Article  CAS  Google Scholar 

  60. Yannopapas V, Paspalakis E, Vitanov NV (2009) Plasmon-Induced Enhancement of Quantum Interference near Metallic Nanostructures. Phys Rev Lett 103:063602

    Article  CAS  PubMed  Google Scholar 

  61. Gu Y, Huang L, Martin OJF, Gong Q (2010) Resonance fluorescence of single molecules assisted by a plasmonic structure. Phys Rev B 81:193103

    Article  CAS  Google Scholar 

  62. Marty R, Arbouet A, Paillard V, Girard C, Colas des Francs G (2010) Photon antibunching in the optical near field. Phys Rev B 82:081403(R)

    Article  CAS  Google Scholar 

  63. Gonzalez-Tudela A, Rodriguez FJ, Quiroga L, Tejedor C (2010) Dissipative dynamics of a solid-state qubit coupled to surface plasmons: From non-Markov to Markov regimes. Phys Rev B 82:115334

    Article  CAS  Google Scholar 

  64. Dzsotjan D, Sorensen AS, Fleischhauer M (2010) Quantum emitters coupled to surface plasmons of a nanowire: A Green's function approach. Phys Rev B 82:075427

    Article  CAS  Google Scholar 

  65. Gu Y et al (2012) Surface-plasmon-induced modification on the spontaneous emission spectrum via subwavelengthconfined anisotropic Purcell factor. Nano Lett 12:2488–2493

    Article  CAS  PubMed  Google Scholar 

  66. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:113002

    Article  CAS  PubMed  Google Scholar 

  67. Fedutik Y, Temnov VV, Schöps O, Woggon U, Artemyev MV (2007) Exciton-plasmon-photon conversion in plasmonic nanostructures. Phys Rev Lett 99:136802

    Article  CAS  PubMed  Google Scholar 

  68. Kühn S, Mori G, Agio M, Sandoghdar V (2008) Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching. Mol Phys 106:893

    Article  CAS  Google Scholar 

  69. Vasa P et al (2008) Coherent Exciton–Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures. Phys Rev Lett 101:116801

    Article  CAS  PubMed  Google Scholar 

  70. Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar TA, Feldmann J (2008) Shaping Emission Spectra of Fluorescent Molecules with Single Plasmonic Nanoresonators. Phys Rev Lett 100:203002

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y, Yang T, Tuominen MT, Achermann M (2009) Radiative Rate Enhancements in Ensembles of Hybrid Metal-Semiconductor Nanostructures. Phys Rev Lett 102:163001

    Article  CAS  PubMed  Google Scholar 

  72. Hakala TK, Toppari JJ, Kuzyk A, Pettersson M, Tikkanen H, Kunttu H, Torma P (2009) Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules. Phys Rev Lett 103:053602

    Article  CAS  PubMed  Google Scholar 

  73. Salomon A, Genet C, Ebbesen TW (2009) Molecule-light complex: dynamics of hybrid molecule-surface plasmon states. Angew Chem Int Ed 48:8748

    Article  CAS  Google Scholar 

  74. Gomez DE, Vernon KC, Mulvaney P, Davis TJ (2010) Nano Lett 10:274

    Article  CAS  PubMed  Google Scholar 

  75. Evangelou S, Yannopapas V, Paspalakis E (2011) Simulating quantum interference in spontaneous decay near plasmonic nanostructures: Population dynamics. Phys Rev A 83:055805

    Article  CAS  Google Scholar 

  76. Evangelou S, Yannopapas V, Paspalakis E (2011) Modifying free-space spontaneous emission near a plasmonic nanostructure. Phys Rev A 83:023819

    Article  CAS  Google Scholar 

  77. Evangelou S, Yannopapas V, Paspalakis E (2012) Transparency and slow light in a four-level quantum system near a plasmonic nanostructure. Phys Rev A 86:053811

    Article  CAS  Google Scholar 

  78. Paspalakis E, Evangelou S, Yannopapas V, Terzis AF (2013) Phase-dependent optical effects in a four-level quantum system near a plasmonic nanostructure. Phys Rev A 88:053832

    Article  CAS  Google Scholar 

  79. Evangelou S, Yannopapas V, Paspalakis E (2014) Transient properties of transparency of a quantum system near a plasmonic nanostructure. Opt Commun 314:36

    Article  CAS  Google Scholar 

  80. Evangelou S, Yannopapas V, Paspalakis E (2014) Modification of Kerr nonlinearity in a four-level quantum system near a plasmonic nanostructure. J Mod Opt 61:1458

    Article  CAS  Google Scholar 

  81. Wang H, Kundu J, Halas NJ (2007) Plasmonic Nanoshell Arrays Combine Surface-Enhanced Vibrational Spectroscopies on a Single Substrate. Angewandte Chemie 46:9040

    Article  CAS  PubMed  Google Scholar 

  82. Zhang S, Ni W, Kou X, Yeung MH, Sun L, Wang J, Yan C (2007) Advanced Functional Materials 17:3258

    Article  CAS  Google Scholar 

  83. Liu JB, Dong H, Li YM, Zhan P, Zhu MW, Wang ZL (2006) A Facile Route to Synthesis of Ordered Arrays of Metal Nanoshells with a Controllable Morphology. Japanese Journal of Applied Physics 45:L582

    Article  CAS  Google Scholar 

  84. Yang S, Cai W, Kong L, Lei Y (2010) Surface Nanometer-Scale Patterning in Realizing Large-Scale Ordered Arrays of Metallic Nanoshells with Well-Defined Structures and Controllable Properties. Advanced Functional Materials 20:2527

    Article  CAS  Google Scholar 

  85. Sainidou R, Stefanou N, Modinos A (2004) Green’s function formalism for phononic crystals. Phys Rev B 69:064301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mortezapour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talkhabi, H., Mortezapour, A. Gain-Assisted Magneto-Optical Rotation in a Four-Level Quantum System Near a Plasmonic Nanostructure. Plasmonics 13, 1243–1253 (2018). https://doi.org/10.1007/s11468-017-0626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0626-x

Keywords

Navigation