Skip to main content
Log in

Graphene Doping Induced Tunability of Nanoparticles Plasmonic Resonances

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Interest in graphene has been widely increasing since its discovery in 2004. Research on graphene for plasmonic applications has also boomed due to the high potential of these systems. In this article, we discuss the possible interaction between metallic NPs and graphene monolayer. We show how the contact between metallic NPs and graphene results in graphene doping. More importantly, we experimentally put into evidence the possible modulation of the plasmonic resonance of NPs by graphene doping. Understanding and evidencing this interaction is highly important both from a fundamental point of view and for specific applications such as active plasmonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  2. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  3. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  4. Heersche HB, Jarillo-Herrero P, Oostinga JB, Vandersypen LMK, Morpurgo AF (2007) Bipolar supercurrent in graphene. Nature 446:56–59

    Article  CAS  PubMed  Google Scholar 

  5. Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  PubMed  Google Scholar 

  6. Atwater HA (2007) The promise of plasmonics. Sci Am 296:56–63

    Article  CAS  PubMed  Google Scholar 

  7. Principles of nano-optics. Cambridge University Press Available at: http://www.cambridge.org/us/academic/subjects/physics/optics-optoelectronics-and-photonics/principles-nano-optics-2nd-edition. Accessed 8 Mar 2016

  8. Schuller JA et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  PubMed  Google Scholar 

  9. Anker JN et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  PubMed  Google Scholar 

  10. Plasmonics, photonics, and materials for sensors and imaging | Institute Of Materials Science & Engineering. Available at: https://imse.wustl.edu/research-plasmonics. Accessed: 22Apr 2016

  11. Liang Z, Sun J, Jiang Y, Jiang L, Chen X (2014) Plasmonic enhanced optoelectronic devices. Plasmonics 9:859–866

    Article  Google Scholar 

  12. Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  PubMed  Google Scholar 

  13. Guilengui VN, Cerutti L, Rodriguez J-B, Tournié E, Taliercio T (2012) Localized surface plasmon resonances in highly doped semiconductors nanostructures. Appl Phys Lett 101:161113

    Article  CAS  Google Scholar 

  14. Nikitin AY, Guinea F, García-Vidal FJ, Martín-Moreno L (2011) Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys Rev B 84:161407

    Article  CAS  Google Scholar 

  15. Salihoglu O, Balci S, Kocabas C (2012) Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl Phys Lett 100:213110

    Article  CAS  Google Scholar 

  16. Reed JC, Zhu H, Zhu AY, Li C, Cubukcu E (2012) Graphene-enabled silver nanoantenna sensors. Nano Lett 12:4090–4094

    Article  CAS  PubMed  Google Scholar 

  17. Xu G et al (2012) Plasmonic graphene transparent conductors. Adv Mater 24:OP71–OP76

    Article  CAS  PubMed  Google Scholar 

  18. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  19. Szunerits S, Maalouli N, Wijaya E, Vilcot J-P, Boukherroub R (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405:1435–1443

    Article  CAS  PubMed  Google Scholar 

  20. Choi SH, Kim YL, Byun KM (2011) Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express 19:458–466

    Article  CAS  PubMed  Google Scholar 

  21. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18:14395–14400

    Article  CAS  PubMed  Google Scholar 

  22. Giovannetti G et al (2008) Doping graphene with metal contacts. Phys Rev Lett 101:026803

    Article  CAS  PubMed  Google Scholar 

  23. Fang Z et al (2012) Plasmon-induced doping of graphene. ACS Nano 6:10222–10228

    Article  CAS  PubMed  Google Scholar 

  24. Gilbertson AM et al (2015) Plasmon-induced optical anisotropy in hybrid graphene–metal nanoparticle systems. Nano Lett 15:3458–3464

    Article  CAS  PubMed  Google Scholar 

  25. Kim J et al (2012) Electrical control of optical plasmon resonance with graphene. Nano Lett 12:5598–5602

    Article  CAS  PubMed  Google Scholar 

  26. Osváth Z et al (2015) The structure and properties of graphene on gold nanoparticles. Nano 7:5503–5509

    Google Scholar 

  27. Lee J-K, Sung H, Jang MS, Yoon H, Choi M (2015) Reliable doping and carrier concentration control in graphene by aerosol-derived metal nanoparticles. J Mater Chem C 3:8294–8299

    Article  CAS  Google Scholar 

  28. Das A et al (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210–215

    Article  CAS  PubMed  Google Scholar 

  29. Lee J, Novoselov KS, Shin HS (2011) Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 5:608–612

    Article  CAS  PubMed  Google Scholar 

  30. Maiti R, Haldar S, Majumdar D, Singha A, Ray SK (2017) Hybrid opto-chemical doping in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition probed by Raman spectroscopy. Nanotechnology 28:075707

    Article  CAS  PubMed  Google Scholar 

  31. Paulus M, Gay-Balmaz P, Martin OJF (2000) Accurate and efficient computation of the Green’s tensor for stratified media. Phys Rev E 62:5797–5807

    Article  CAS  Google Scholar 

  32. Chaumet PC, Rahmani A, Bryant GW (2003) Generalization of the coupled dipole method to periodic structures. Phys Rev B 67:165404

    Article  CAS  Google Scholar 

  33. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  34. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94:031901

    Article  CAS  Google Scholar 

  35. Dawlaty JM et al (2008) Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl Phys Lett 93:131905

    Article  CAS  Google Scholar 

  36. Gusynin VP, Sharapov SG, Carbotte JP (2007) Sum rules for the optical and hall conductivity in graphene. Phys Rev B 75:165407

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support of NanoMat (www.nanomat.eu) by the “Ministère de l’enseignement supérieur et de la recherche,” the “Conseil régional Champagne-Ardenne,” the “Fonds Européen de Développement Régional (FEDER) fund,” and the “Conseil général de l’Aube” is acknowledged. T. M thanks the DRRT (Délégation Régionale à la Recherche et à la Technologie) of Champagne-Ardenne, the Labex ACTION project (contract ANR-11-LABX-01-01) and the CNRS via the chaire « optical nanosensors » for the financial support. This work was performed in the context of the COST Action MP1302 Nanospectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. RN performed the experimental work and the analysis of the results; GL performed the simulations and the analysis of the results. PMA, GL, and TM supervised this work and the analysis of the results.

Corresponding authors

Correspondence to Rana Nicolas or Thomas Maurer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolas, R., Lévêque, G., Adam, PM. et al. Graphene Doping Induced Tunability of Nanoparticles Plasmonic Resonances. Plasmonics 13, 1219–1225 (2018). https://doi.org/10.1007/s11468-017-0623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0623-0

Keywords

Navigation