Skip to main content
Log in

A Research of Nonreciprocal Transmission of Graphene Defect

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, modified transmission matrix method is used to construct one-dimensional multilayer composite membrane structure doped with graphene defect. The optimal construction can be found to realize reciprocity transmission by comparing the influence of the time inversion-symmetry and space inversion-symmetry doped on nonreciprocal transmission. The simulation results show that it cannot ensure the nonreciprocal transmission with rotatory material only. Nonreciprocal transmission should be designed through the structure damage of the space inversion-symmetry to realize it. The structure absorption peak position will move to the direction of the wavelength increase along with the increase of thickness of rotation media. The structure shows the approximate perfect absorption characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402–207404

    Article  CAS  PubMed  Google Scholar 

  2. Greffet J-J, Carminati R, Joulain K, Mulet J-P, Mainguy S, Chen Y (2002) Coherent emission of light by thermal sources. Nature 416(6876):61–64

    Article  CAS  PubMed  Google Scholar 

  3. Kim PC, Lee DG (2009) Composite sandwich constructions for absorbing the electromagnetic waves. Compos Struct 87(2):161–167

    Article  Google Scholar 

  4. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Article  CAS  PubMed  Google Scholar 

  5. Shu S, Li Z, Li YY (2013) Triple-layer Fabry-Perot absorber with nearperfect absorption in visible and near-infrared regime. Opt Express 21(21):25307–25315

    Article  CAS  PubMed  Google Scholar 

  6. Diem M, Koschny T, Soukoulis CM (2009) Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys Rev B 79(3):033101–033104

    Article  CAS  Google Scholar 

  7. Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC (2010) Surface-enhanced Raman spectroscopy of grapheme. ACS Nano 4(10):5617–5626

    Article  CAS  PubMed  Google Scholar 

  8. Shao-Juan L, Sheng G, Hao-Ran M, Xu Q-Y, Hong Q, Peng-Fei L, Xue Y-Z, Qiao-Liang B (2014) Research progress in graphene use in photonic and optoelectronic devices (in Chinese). New Carbon Materials 29(5):329–356

    Google Scholar 

  9. Lu S, Xiaogang C, Xianfeng C, Bin T (2015) TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure (in Chinese). Acta Opt Sin 35(1):0116003–0116006

    Article  CAS  Google Scholar 

  10. Khanikaev AB, Steel MJ (2009) Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices. Opt Express 17(7):5265–5272

    Article  CAS  PubMed  Google Scholar 

  11. Dong HY, Wang J, Cui TJ (2013) One-way Tamm plasmon polaritons at the interface between magnetophotonic crystals and conducting metal oxides. Phys Rev B 87(4):045406–045405

    Article  CAS  Google Scholar 

  12. Ma Rongkun, Wang Jijun, Fang Yuntuan (2016) Transfer matrix method of one-dimensional photonic crystal composed of gyromagnetic materials (in Chinese). Laser & optoelectronics progress 53(1):011601–011605.

  13. Cheng He (2011) Nonreciprocal properties in photonic crystals (In Chinese). Ph.D. dissertation, Nanjing University, Nanjing

  14. Hashemi M, Farzad MH, Asger Mortensen N, Xiao S (2013) Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures. J Opt 15:055003–055005

    Article  CAS  Google Scholar 

  15. Liu J-T, Liu N-H, Li J, Li XJ, Huang J-H (2012) Enhanced absorption of graphene with one-dimensional photonic crystal. Appl Phys Lett 101:052104–052103

    Article  CAS  Google Scholar 

  16. Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong (2013) Optical absorptions in monolayer and bilayer grapheme (in Chinese). Acta Phys Sin 62(18):187301–187306.

  17. Liu Y-J, Xie X, Xie L, Yang Z-K, Yang H-W (2016) Dual-band absorption characteristics of one-dimensional photonic crystal with graphene-based defect. Optik 127(9):3945–3948

    Article  CAS  Google Scholar 

  18. Zhang Y, Xie L, Hao J-J, Liu Y-J, Ma B-L, Xu Z-G, Yang H-W (2017) A new method study of spectral measurement and prediction based on the nonlinear solution concentration of alcohol. Physica B 516(1):32–35

    CAS  Google Scholar 

  19. Yang HW (2011) Simulation and analysis of interaction between oblique incidence electromagnetic wave and plasma slab. Optik 122(11):945–948

    Article  CAS  Google Scholar 

  20. Fang Y-t, Chen L-k, Zheng J, Zhou L-y, Zhou J (2014) Nonreciprocal channels of light through the coupling of two nonsymmetric Tamm magnetoplasmon polaritons. IEEE photonics journal 6(4):4801611–4801611

    Google Scholar 

  21. Fang Y-t (2014) Tunable nonreciprocal tunneling based on nonsymmetric magnetoplasmonic resonance structure. Plasmonics 9(5):1133–1141

    Article  CAS  Google Scholar 

  22. Yeh P (1998) Optical waves in layered media. John Wiley & Sons, New York

    Google Scholar 

  23. Fang Y-T, He H-Q, Lin Z-L (2015) Nonreciprocal perfect absorber based on an ultra-compact nonsymmetry cavity structure. International journal of modern physics B 29(3):1550001–1550013

    Article  Google Scholar 

  24. Ma Rongkun, Tang Yueming, Wang Jijun, Zheng Zhaowen, Fang Yuntuan (2016) One-way absorber based on coupling of magnetic surface plasmonic resonances (in Chinese). Chinese journal of lasers 43(1):0117001–0117006.

  25. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Applied physics letter 94(3):031901–031903

    Article  CAS  Google Scholar 

  26. Vincenti MA, de Ceglia D, Grande M, D’Orazio A, Scalora M (2013) Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect. Opt Lett 38(18):3550–3553

    Article  CAS  PubMed  Google Scholar 

  27. Palik ED (1997) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. KYZ201321) and the College of Sciences of Nanjing Agricultural University (Grant No. CoS201410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YJ., Yang, ZK., Hao, JJ. et al. A Research of Nonreciprocal Transmission of Graphene Defect. Plasmonics 13, 1201–1207 (2018). https://doi.org/10.1007/s11468-017-0621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0621-2

Keywords

Navigation