Skip to main content
Log in

Broadband Terahertz Absorption in Graphene-Embedded Photonic Crystals

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The absorption in graphene is rather low at terahertz frequencies. Here, we present a graphene-embedded photonic crystal structure to realize broadband terahertz absorption in graphene. The approach provides absorption enhancement in the whole terahertz regime (from 0.1 to 10 THz). It is shown that the average absorption in the graphene-embedded photonic crystal can be enhanced in the multiple propagating bands of the photonic crystals. The absorption efficiency can be further improved by optimizing the characteristic frequency, optical thickness ratio in a unit cell, and the angle of incidence on the photonic crystals. A maximum broadband absorption factor of 28.8% was achieved for fixed alternative dielectric materials. The graphene-embedded photonic crystal is promising for terahertz functional devices with broadband response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photon 4(9):611–622

    Article  CAS  Google Scholar 

  2. Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene Plasmonics: A Platform for Strong Light Matter Interactions. Nano Lett 11(8):3370–3377

    Article  CAS  PubMed  Google Scholar 

  3. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294

    Article  CAS  PubMed  Google Scholar 

  4. Tassin P, Koschny T, Soukoulis CM (2013) Graphene for terahertz applications. Science 341(6146):620–621

    Article  CAS  PubMed  Google Scholar 

  5. Low T, Chaves A, Caldwell JD, Kumar A, Fang NX, Avouris P, Heinz TF, Guinea F, Martin-Moreno L, Koppens F (2017) Polaritons in layered two-dimensional materials. Nat Mater 16(2):182–194

    Article  CAS  PubMed  Google Scholar 

  6. Wunsch B, Stauber T, Sols F, Guinea F (2006) Dynamical polarization of graphene at finite doping. New J Phys 8(12):318

    Article  CAS  Google Scholar 

  7. Gusynin VP, Sharapov SG, Carbotte JP (2007) Magneto-optical conductivity in graphene. J Phys Condens Matter 19(2):026222

    Article  CAS  Google Scholar 

  8. Hwang EH, Das Sarma S (2007) Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B 75(20):205418

    Article  CAS  Google Scholar 

  9. Horng J, Chen C-F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel HA, Martin M, Zettl A, Crommie MF, Shen YR, Wang F (2011) Drude conductivity of Dirac fermions in graphene. Phys Rev B 83(16):165113

    Article  CAS  Google Scholar 

  10. Chen H-T, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD (2006) Active terahertz metamaterial devices. Nature 444(7119):597–600

    Article  CAS  PubMed  Google Scholar 

  11. Driscoll T, Kim H-T, Chae B-G, Kim B-J, Lee Y-W, Jokerst NM, Palit S, Smith DR, Di Ventra M, Basov DN (2009) Memory metamaterials. Science 325(5947):1518–1521

    Article  CAS  PubMed  Google Scholar 

  12. Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen H-T, Taylor AJ, Han J, Zhang W (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151

    Article  CAS  PubMed  Google Scholar 

  13. Cheng H, Chen S, Yu P, Liu W, Li Z, Li J, Xie B, Tian J (2015) Dynamically Tunable Broadband Infrared Anomalous Refraction Based on Graphene Metasurfaces. Adv Opt Mater 3(12):1744–1749

    Article  CAS  Google Scholar 

  14. Zhang FL, Feng SQ, Qiu KP, Liu ZJ, Fan YC, Zhang WH, Zhao Q, Zhou J (2015) Mechanically stretchable and tunable metamaterial absorber. Appl Phys Lett 106(9):091907

    Article  CAS  Google Scholar 

  15. Fan Y, Qiao T, Zhang F, Fu Q, Dong J, Kong B, Li H (2017) An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci Rep 7:40441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881): 1308

    Article  CAS  PubMed  Google Scholar 

  17. Fan Y, Wei Z, Zhang Z, Li H (2013) Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators. Opt Lett 38(24):5410–5413

    Article  CAS  PubMed  Google Scholar 

  18. Papasimakis N, Thongrattanasiri S, Zheludev NI, García de Abajo FJ (2013) The magnetic response of graphene split-ring metamaterials. Light Sci Appl 2:e78

    Article  CAS  Google Scholar 

  19. Fan Y, Shen N-H, Koschny T, Soukoulis CM (2015) Tunable terahertz meta-surface with graphene cut-wires. ACS Photonics 2(1):151–156

    Article  CAS  Google Scholar 

  20. Longhi S (2010) PT-symmetric laser absorber. Phys Rev A 82(3):031801

    Article  CAS  Google Scholar 

  21. Wan W, Chong Y, Ge L, Noh H, Stone AD, Cao H (2011) Time-Reversed Lasing and Interferometric Control of Absorption. Science 331(6019):889–892

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, MacDonald KF, Zheludev NI (2012) Controlling light-with-light without nonlinearity. Light Sci Appl 1:e18

    Article  CAS  Google Scholar 

  23. Fan Y, Zhang F, Zhao Q, Wei Z, Li H (2014) Tunable terahertz coherent perfect absorption in a monolayer graphene. Opt Lett 39(21):6269–6272

    Article  CAS  PubMed  Google Scholar 

  24. Fan Y, Liu Z, Zhang F, Zhao Q, Wei Z, Fu Q, Li J, Gu C, Li H (2015) Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Sci Rep 5:13956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong ZJ, Xu Y-L, Kim J, O’Brien K, Wang Y, Feng L, Zhang X (2016) Lasing and anti-lasing in a single cavity. Nat Photon 10(12):796–801

    Article  CAS  Google Scholar 

  26. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and Negative Refractive Index. Science 305(5685):788– 792

    Article  CAS  PubMed  Google Scholar 

  27. Soukoulis CM, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon 5(9):523–530

    Article  CAS  Google Scholar 

  28. Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar Photonics with Metasurfaces. Science 339 (6125):1232009

    Article  CAS  PubMed  Google Scholar 

  29. Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13(2):139–150

    Article  CAS  PubMed  Google Scholar 

  30. Chen P-Y, Alù A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5 (7):5855–5863

    Article  CAS  PubMed  Google Scholar 

  31. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634

    Article  CAS  PubMed  Google Scholar 

  32. Alaee R, Farhat M, Rockstuhl C, Lederer F (2012) A perfect absorber made of a graphene micro-ribbon metamaterial. Opt Express 20(27):28017–28024

    Article  CAS  PubMed  Google Scholar 

  33. Liu P, Cai W, Wang L, Zhang X, Xu J (2012) Tunable terahertz optical antennas based on graphene ring structures. Appl Phys Lett 100(15):153111

    Article  CAS  Google Scholar 

  34. Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Complete Optical Absorption in Periodically Patterned Graphene. Phys Rev Lett 108(4):047401

    Article  CAS  PubMed  Google Scholar 

  35. Cheng H, Chen S, Yu P, Li J, Deng L, Tian J (2013) Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses. Opt Lett 38(9):1567–1569

    Article  CAS  PubMed  Google Scholar 

  36. He S, Zhang X, He Y (2013) Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Opt Express 21(25):30664–30673

    Article  CAS  PubMed  Google Scholar 

  37. Pirruccio G, Martín Moreno L, Lozano G, Gómez Rivas J (2013) Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7(6):4810–4817

    Article  CAS  PubMed  Google Scholar 

  38. Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photon 7(5):394–399

    Article  CAS  Google Scholar 

  39. García de Abajo FJ (2014) Graphene plasmonics: Challenges and opportunities. ACS Photon 1(3):135–152

    Article  CAS  Google Scholar 

  40. Low T, Avouris P (2014) Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano 8 (2):1086–1101

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T (2014) Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt Express 22(19):22743– 22752

    Article  CAS  PubMed  Google Scholar 

  42. Zhu J, Ma Z, Sun W, Ding F, He Q, Zhou L, Ma Y (2014) Ultra-broadband terahertz metamaterial absorber. Appl Phys Lett 105(2):021102

    Article  CAS  Google Scholar 

  43. Li X, Liu H, Sun Q, Huang N (2015) Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber. Photon Nanostruct Fundam Appl 15:81–88

    Article  Google Scholar 

  44. Cheng Y, Gong R, Cheng Z (2016) A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Opt Commun 361:41–46

    Article  CAS  Google Scholar 

  45. Cheng Y, Gong R, Zhao J (2016) A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves. Opt Mater 62:28–33

    Article  CAS  Google Scholar 

  46. Fan Y, Shen N-H, Zhang F, Wei Z, Li H, Zhao Q, Fu Q, Zhang P, Koschny T, Soukoulis CM (2016) Electrically tunable goos-hänchen effect with graphene in the terahertz regime. Adv Opt Mater 4 (11):1824–1828

    Article  CAS  Google Scholar 

  47. Liu J-T, Liu N-H, Li J, Li XJ, Huang J-H (2012) Enhanced absorption of graphene with one-dimensional photonic crystal. Appl Phys Lett 101(5):052104

    Article  CAS  Google Scholar 

  48. Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews AM, Schrenk W, Strasser G, Mueller T (2012) Microcavity-Integrated Graphene Photodetector. Nano Lett 12 (6):2773–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu PC, Papasimakis N, Tsai DP (2016) Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption. Phys Rev Appl, (4):044019

  50. Yablonovitch E (2001) Photonic crystals: semiconductors of light. Sci Am 285(6):47–51. 54

    Article  CAS  PubMed  Google Scholar 

  51. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: Molding the flow of light. Princeton University Press, Princeton

    Google Scholar 

  52. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

    Article  CAS  Google Scholar 

  53. Kaipa CSR, Yakovlev AB, Hanson GW, Padooru YR, Medina F, Mesa F (2012) Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies. Phys Rev B 85(24):245407

    Article  CAS  Google Scholar 

  54. Zhang Z, Fan Y (2012) Propagation properties of a wave in a disordered multilayered system containing hyperbolic metamaterials. J Opt Soc Am B 29(11):2995–2999

    Article  CAS  Google Scholar 

  55. Fan Y, Wei Z, Li H, Chen H, Soukoulis CM (2013) Photonic band gap of a graphene-embedded quarter-wave stack. Phys Rev B 88(24):241403

    Article  CAS  Google Scholar 

  56. Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7(5):330–334

    Article  CAS  PubMed  Google Scholar 

  57. Chang Y-C, Liu C-H, Liu C-H, Zhang S, Marder SR, Narimanov EE, Zhong Z, Norris TB (2016) Realization of mid-infrared graphene hyperbolic metamaterials. Nat Commun 7:10568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the National Science Foundation of China (NSFC) (Grants No. 11674266, 11372248, 61505164, 11404213, 11674248, 11504034), the Program for Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province, the Shaanxi Project for Young New Star in Science and Technology (Grant No. 2015KJXX-11), the Fundamental Research Funds for the Central Universities, the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2016jcyjA0186), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJ1600515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuancheng Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Tu, L., Zhang, F. et al. Broadband Terahertz Absorption in Graphene-Embedded Photonic Crystals. Plasmonics 13, 1153–1158 (2018). https://doi.org/10.1007/s11468-017-0615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0615-0

Keywords

Navigation