Skip to main content
Log in

Ultra-High Sensitivity Nanosensor Based on Multiple Fano Resonance in the MIM Coupled Plasmonic Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper proposes a compact plasmonic structure that is composed of a metal-insulator-metal (MIM) waveguide coupled with a groove and stub resonators, and then investigates it by utilizing the finite element method (FEM). Simulation results show that the interaction between the local discrete state caused by the stub resonator and the continuous spectrum caused by the groove resonator gives rise to one of the two Fano resonances, while the generation of the other resonance relies only on the groove. Meanwhile, the asymmetrical linear shape and the resonant wavelength can be easily tuned by changing the parameters of the structure. By adding stubs on the groove, we excited multiple Fano resonances. The proposed structure can serve as an excellent plasmonic sensor with a sensitivity of 2000 nm/RIU and a figure of merit of about 3.04 × 103, which can find extensive applications for nanosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  PubMed  Google Scholar 

  2. Xu T, Wu YK, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nature Commun 1(5):59

    Article  CAS  Google Scholar 

  3. Chen Z, Chen J, Yu L, Xiao J (2014) Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator. Plasmonics 10(1):131–137

    Article  CAS  Google Scholar 

  4. Chen J, Li Z, Lei M, Fu X, Xiao J, Gong Q (2012) Plasmonic Y-splitters of high wavelength resolution based on strongly coupledresonator effects. Plasmonics 7(3):441–445

    Article  CAS  Google Scholar 

  5. Chen J, Wang C, Zhang R, Xiao J (2012) Multiple plasmon-induced transparencies in coupled-resonator systems. Opt Lett 37(24):5133–5135

    Article  PubMed  Google Scholar 

  6. Veronis G, Fan SH (2005) Bends and splitters in metal-dielectricmetal subwavelength plasmonic waveguides. Appl Phys Lett 87(13):131102

    Article  CAS  Google Scholar 

  7. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182(2):539–554

    Article  Google Scholar 

  8. Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876

    Article  PubMed  Google Scholar 

  9. Zhang Q, Huang XG, Lin XS, Tao J, Jin XP (2009) A subwavelength coupler-type MIM optical filter. Opt Exp 17(9):7549–7554

    Article  CAS  Google Scholar 

  10. Tao J, Huang XG, Lin XS, Zhang Q, Jin XP (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple teeth-shaped structure. Opt Exp 17(16):13 989–13 994

    Article  CAS  Google Scholar 

  11. Chen Z, Yu L (2014) Multiple fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photon J 6(6). doi:10.1109/JPHOT.2014.2368779

  12. Chen Z, Cao XY, Song XK, Wang LL, Yu L (2015) Side-coupled cavity-induced Fano resonance and its application in nanosensor. Plasmonics 11(16):307–313

    Google Scholar 

  13. Rahimzadegan A et al (2014) Improved plasmonic filter, ultra-compact demultiplexer, and splitter. J Opt Soc Korea 18(3):261–273

    Article  Google Scholar 

  14. Wang GX, Lu H, Liu XM, Mao D, Duan LN (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt Exp 19(4):3513–3518

    Article  CAS  Google Scholar 

  15. Noual A, Akjouj A, Pennec Y, Gillet J, Djafari-Rouhani B (2009) Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J Phys 11(10):19

  16. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(16):1866–1878

    Article  CAS  Google Scholar 

  17. Miroshnichenko AE, Flach S, Kivshar YS (2009) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298

    Article  CAS  Google Scholar 

  18. Luk’yanchuk B et al (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  CAS  PubMed  Google Scholar 

  19. Chen JJ, Li Z, Zhang X, Xiao JH, Gong QH (2013) Submicron bidirectional all-optical plasmonic switches. Sci Rep 3(3):1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heuck M, Kristensen PT, Elesin Y, Mork J (2013) Improved switching using Fano resonances in photonic crystal structures. Opt Lett 38(14):2466–2468

    Article  PubMed  Google Scholar 

  21. Yun BF, Zhang RH, Hu GH, Cui YP (2016) Ultra sharp fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics 11(4):1157–1162

  22. Chen Z, Wang WH, Cui NL, Yu L, Duan GY, Zhao FY, Xiao JH (2015) Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system. Plasmonics 10(3):721–727

    Article  CAS  Google Scholar 

  23. Chen Z, Yu L, Wang LL, Duan GY, Zhao FY, Xiao JH (2015) A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system. IEEE Photon Technol Lett 27(16):1695–1698

    Article  CAS  Google Scholar 

  24. Chen Z, Cui LN, Song XK, Yu L, Xiao JH (2015) High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt Commun 340(340):1–4

    CAS  Google Scholar 

  25. Lu H, Liu XM, Mao D, Wang GX (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37(18):3780–3782

    Article  PubMed  Google Scholar 

  26. Qi JW, Chen ZQ, Chen J, Li YD, Qiang W, Xu JJ, Sun Q (2014) Independently tunabledouble Fano resonances in asymmetric MIM waveguide structure. Opt Express 22(12):14688–14695

    Article  PubMed  Google Scholar 

  27. Zhou Z, Hu F, Yi H (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36(8):1500–1502

    Article  PubMed  Google Scholar 

  28. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Article  CAS  PubMed  Google Scholar 

  29. Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2):161–167

    Article  CAS  Google Scholar 

  30. Chen Z, Yu L, Wang LL, Duan GY, Zhao YF, Xiao JH (2015) Sharp asymmetric line shapes in a plasmonic waveguide system and its application in nanosensor. J Lighwave Tec 33(15):3250–3253

    Article  Google Scholar 

  31. Ameling R, Langguth L, Hentschel M, Mesch M (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97(25):253116

    Article  CAS  Google Scholar 

  32. Zhang YY, Li SL, Chen Z, Jing P, Jiao RZ, Zhang Y, Wang LL, Yu L (2016) Ultra-high Sensitivity Plasmonic Nanosensor Based on Multiple Fano Resonance in the MDM Side-Coupled Cavities. Plasmonics (4):1–7. doi:10.1007/s11468-016-0363-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonggang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Yu, S. Ultra-High Sensitivity Nanosensor Based on Multiple Fano Resonance in the MIM Coupled Plasmonic Resonator. Plasmonics 13, 1115–1120 (2018). https://doi.org/10.1007/s11468-017-0610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0610-5

Keywords

Navigation