Skip to main content
Log in

On-Line Optical and Morphological Studies of Silver Nanoparticles Growth Formed by Nanosecond Laser Irradiation of Silver-Exchanged Silicate Glass

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver-exchanged silicate glass has been irradiated by 532-nm pulsed Nd:YAG laser in order to locally form metallic nanoparticles. The particular interest of this process is to locally control the silver nanoparticles (NPs) growth. Silver ions are exchanged with sodium ions near the glass surface after dumping of a silicate glass few minutes in silver and sodium nitrates molten salt. A low-energy density laser exposure (0.239 J/cm2) chosen at the ablation threshold allows to observe the kinetics of the silver NPs growth according to the increasing shots number. An on-line optical measurement is carried out after each shot to identify the most important steps during the irradiation process. According to this measurement, we have determined four steps highlighted by UV/Visible spectrophotometry and we have identified the influence of located surface plasmon resonance. Three combined material analysis methods were used to understand the glass/laser interaction mechanism: we outlined the material volume variations by profilometric method, the element distribution by scanning electron microscopy and finally the structural distribution of the irradiated region by a local infrared investigation. The trend for NPs formation revealed by the UV/Visible spectrophotometry is thus explained by the formation of a ring expelled from a central hole. We highlight that the on-line extinction measurement can be used to data process the NPs evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Trave E, Gonella F, Calvelli P, Cattaruzza E, Canton P, Cristofori D, Quaranta A, Pellegini G (2010) Nucl Inst Methods Phys Res B 268:3177–3182

    Article  CAS  Google Scholar 

  2. Cattaruzza E, Mardegan M, Trave E, Battaglin G, Calvelli P, Enrichi F, Gonella F (2011) Appl Surf Sci 257:5434–5438

    Article  CAS  Google Scholar 

  3. Sakamoto M, Fujistuka M, Majima T (2009) J Photochem Photobiol C Photochem Rev 10:33–56

    Article  CAS  Google Scholar 

  4. Khlebtsov NG, Dykman LA (2010) J Quant Spectrosc Radiat Transf 111:1–35

    Article  CAS  Google Scholar 

  5. Henley SJ, Carey JD, Silva SRP (2007) Appl Surf Sci 253:8080–8085

    Article  CAS  Google Scholar 

  6. Okur I, Townsend PD (2004) Nucl Inst Methods Phys Res B 222:583–586

    Article  CAS  Google Scholar 

  7. Rosenbluh M, Antonov I, Ianetz D, Kaganovskii Y, Lipovskii AA (2003) Opt Mater 24:401–410

    Article  CAS  Google Scholar 

  8. Stalmashonak A, Unal AA, Graener H, Seifert G (2009) J Phys Chem C 113:12028–12032

    Article  CAS  Google Scholar 

  9. Véron O, Blondeau J-P, Capoen B, Jegouso D (2011) J Optoelectron Adv Mater 13(10):1235–1239

    Google Scholar 

  10. Blondeau J-P, Veron O (2010) J Optoelectron Adv Mater 12(3):445–450

    CAS  Google Scholar 

  11. Grabiec M, Wolak A, Veron O, Blondeau JP, Pellerin N, Pellerin S, Dzierżęga K (2012) Plasmonics 7:279–286

    Article  CAS  Google Scholar 

  12. Blondeau JP, Veron O, Catan F, Kaitasov O, Sbai N, Andreazza-Vignolle C (2009) Plasmonics 4:245–252

    Article  CAS  Google Scholar 

  13. Blondeau J-P, Pellerin S, Vial V, Dzierżęga K, Pellerin N, Andreazza-Vignolle C (2008) J Cryst Growth 311:172–184

    Article  CAS  Google Scholar 

  14. Blondeau JP, Véron O (2011) Opt Mater 34:278–286

    Article  CAS  Google Scholar 

  15. Sheng J (2009) Int J Hydrog Energy 34:3471–2474

    Google Scholar 

  16. Giussani B, Monticelli D, Rampazzi L (2009) Anal Chim Acta 635:6–21

    Article  CAS  Google Scholar 

  17. Ganeev RA, Ryasnyansky AI (2005) Opt Commun 246:163–171

    Article  CAS  Google Scholar 

  18. Cottancin E, Celep G, Lermé J, Pellarin M, Huntzinger JR, Vialle JL, Broyer M (2006) Theor Chem Accounts 116:514–523

    Article  CAS  Google Scholar 

  19. Koledintseva MY, Du Broff RE, Schwartz RW. PIER 63:223–242

  20. Matsusaka S, Watanebe T (2010) Scr Mater 62:141–143

    Article  CAS  Google Scholar 

  21. Veron O, Blondeau JP, De Sousa Meneses D, Andreazza-Vignolle C (2011) Plasmonics 6:137–148

    Article  CAS  Google Scholar 

  22. He Y, Zeng TF (2010) J Phys Chem 114:18023–18030

    CAS  Google Scholar 

  23. Hari M, Mathew S, Nithyaja B, Ani Joseph S, Nampoori VPN, Radhakrishnan P (2012) Opt Quant Electron 43:49–58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olivier Véron or Jean-Philippe Blondeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Véron, O., Blondeau, JP., Grabiec, M. et al. On-Line Optical and Morphological Studies of Silver Nanoparticles Growth Formed by Nanosecond Laser Irradiation of Silver-Exchanged Silicate Glass. Plasmonics 8, 93–103 (2013). https://doi.org/10.1007/s11468-012-9427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9427-4

Keywords

Navigation