Skip to main content
Log in

DDA-Based Simulation of UV–vis Extinction Spectra of Ag Nanorods Synthesized Through Seed-Mediated Growth Process

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Present investigation demonstrates a very simple seed-mediated route for the synthesis of silver nanorods in aqueous solution. Central to the concept of seed-mediated growth of nanoparticles is that small nanoparticle seeds serve as nucleation centres to grow nanoparticles to a desired size and shape. Hydroxypropyl methyl cellulose (HPMC) has been used as soft template for one-dimensional growth of silver particles. Morphological, structural and spectral changes that are associated with the seed-mediated growth of the nanoparticles in presence of HPMC are characterized using UV–vis and HR-TEM spectroscopic study. Simulation of UV–vis extinction spectra of our synthesized silver nanorods has been carried out using discrete dipole approximation methodology. The broad red-shifted longitudinal extinction band of green-coloured silver sol has been explained, due to the presence of silver nanorods of different aspect ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  2. Sun S, Murray CB (1999) Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J Appl Phys 85:4325–4330

    Article  CAS  Google Scholar 

  3. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  4. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle. Science 289:1757–1760

    Article  CAS  Google Scholar 

  5. Wiley B, Im S, Li Z, McLellan JM, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–15675

    Article  CAS  Google Scholar 

  6. Velev OD, Kaler EW (1999) In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 15:3693–3698

    Article  CAS  Google Scholar 

  7. Bharadwaj P, Anger P, Novotny L (2007) Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology 18:044017–044022

    Article  Google Scholar 

  8. Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced raman excitation spectroscopy. J Phys Chem B 107:7426–7433

    Article  CAS  Google Scholar 

  9. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–375

    Article  CAS  Google Scholar 

  10. Kreibig U, Vollmer M (1995) Optical properties of metal cluster, vol 25. Springer, Berlin

    Google Scholar 

  11. Wiley BJ, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–1076

    Article  CAS  Google Scholar 

  12. Sun Y, Xia Y (2003) Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 nm to 750 nm. Analyst (Lond) 128:686–691

    Article  CAS  Google Scholar 

  13. Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950–959

    Article  CAS  Google Scholar 

  14. Bhui DK, Bar H, Sarkar P, Sahoo GP, De SP, Misra A (2009) Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution. J Mol Liqs 145:33–37

    Article  CAS  Google Scholar 

  15. Wang W, Efrima S, Regev O (1998) Directing oleate stabilized nanosized silver colloids into organic phases. Langmuir 14:602–610

    Article  CAS  Google Scholar 

  16. Sarkar P, Bhui DK, Bar H, Sahoo GP, De SP, Misra A (2009) Synthesis and photophysical study of silver nanoparticles stabilized by unsaturated dicarboxylates. J Lumn 129:704–709

    Article  CAS  Google Scholar 

  17. Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2:1003–1007

    Article  CAS  Google Scholar 

  18. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745

    Article  CAS  Google Scholar 

  19. Whelan AM, Brennan ME, Blau WJ, Kelly JM (2004) Enhanced third-order optical nonlinearity of silver nanoparticles with a tunable surface plasmon resonance. J Nanosci Nanotech 4:66–68

    Article  CAS  Google Scholar 

  20. Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Coll Int Sci 288:444–448

    Article  CAS  Google Scholar 

  21. Yang Q, Wang F, Tang KB, Wang CR, Chen ZW, Qian YT (2002) The formation of fractal Ag nanocrystallites via γ-irradiation route in isopropyl alcohol. Chem Phys 78:495–500

    Google Scholar 

  22. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloid Surf A 339:134–139

    Article  CAS  Google Scholar 

  23. Jana NR, Grearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322

    Article  CAS  Google Scholar 

  24. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420

    Article  CAS  Google Scholar 

  25. Ledwith DM, Whelan AM, Kelly JM (2007) A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J Mater Chem 17:2459–2464

    Article  CAS  Google Scholar 

  26. Faraday M (1857) The Bakerian lecture, experimental relations of gold (and other metals) to light. Philos Trans 147:145–181

    Article  Google Scholar 

  27. Mie G (1908) Contribution to the optical properties of turbid media, in particular of colloidal suspensions of metals. Ann Phys 25:377–452

    Article  CAS  Google Scholar 

  28. Kerker M, Wang DS, Giles CL (1983) J Opt Soc Am 73:765–767

    Article  Google Scholar 

  29. Wu ZS, Wang YP (1991) Electromagnetic scattering for multilayered sphere: recursive algorithms. Radio Sci 26:1393–1401

    Article  Google Scholar 

  30. Ludwig AC (1991) The generalized multipole technique. Comput Phys Commun 68:306–314

    Article  Google Scholar 

  31. Mishchenko MI, Travis LD, Mackowski DW (1996) T-matrix computations of light scattering by nonspherical particles. J Quant Spectrosc Radiat Transfer 55:535–575

    Article  CAS  Google Scholar 

  32. Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical dielectric grains. Astrophys J 186:705–714

    Article  Google Scholar 

  33. Kottman JP, Martin OJF, Smith DR, Schultz S (2000) Spectral response of plasmon resonant nanoparticles with a non-regular shape. Opt Express 6:213–219

    Article  Google Scholar 

  34. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprism. Nano Lett 6:2060–2065

    Article  CAS  Google Scholar 

  35. Qin L, Zou S, Xue C, Atkinson A, Schatz GC, Mirkin CA (2006) Designing, fabricating, and imaging raman hot spots. Proc Natl Acad Sci U S A 103:13300–13303

    Article  CAS  Google Scholar 

  36. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  37. Haes AJ, Zhao J, Zou S, Own CS, Marks LD, Schatz GC, Van Duyne RP (2005) Triangular Ag nanotriangles fabricated by nanosphere lithography. J Phys Chem B 109:11158–11162

    Article  CAS  Google Scholar 

  38. Hao E, Li S, Bailey RC, Zou S, Schatz GC, Hupp JT (2004) Optical properties of metal nanoshells. J Phys Chem B 108:1224–1229

    Article  CAS  Google Scholar 

  39. Hao E, Schatz GC (2004) Surfaces, interfaces, and materials electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  40. Zhao L, Zou S, Hao E, Schatz GC (2005) Electrodynamics in computational chemistry. Theor Appl Comput Chem 47–65

  41. Schatz GC (2001) Electrodynamics of nonspherical noble metal nanoparticles and nanoparticle aggregates. THEOCHEM 573:73–80

    Article  CAS  Google Scholar 

  42. Lee KS, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109:20331–20338

    Article  CAS  Google Scholar 

  43. Drain BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499

    Article  Google Scholar 

  44. DeVoe H (1964) Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J Chem Phys 41:393–400

    Article  CAS  Google Scholar 

  45. DeVoe H (1965) Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals. J Chem Phys 43:3199–3208

    Article  CAS  Google Scholar 

  46. Draine BT (1988) The Discrete-dipole approximation and its application to interstellar graphic grains. Astrophys J 333:848–872

    Article  CAS  Google Scholar 

  47. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  48. Drain BT, Flatau PJ (2008) “User Guide for the Discrete Approximation Code DDSCAT 7.0”. Available at: http://arxiv.org/abs/0809.0337v4. Accessed 1 Sept 2008

  49. Drain BT, Goodman J (1993) Beyond Classius-Mossotti wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys J 405:685–697

    Article  Google Scholar 

  50. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  51. Bohren CF, Hoffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  52. Raveendran P, Fu J, Wallen SL (2003) Completely green synthesis and stabilization of metal nanoparticles. J Am Chem Soc 12:13940–13941

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support received from UGC, New Delhi for carrying out this research work. P.S and S.P also thanks to CSIR, New Delhi for financial support (while carrying out this research work).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, P., Bhui, D.K., Bar, H. et al. DDA-Based Simulation of UV–vis Extinction Spectra of Ag Nanorods Synthesized Through Seed-Mediated Growth Process. Plasmonics 6, 43–51 (2011). https://doi.org/10.1007/s11468-010-9167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9167-2

Keywords

Navigation