A new approach to solar flare prediction

Abstract

All three components of the current density are required to compute the heating rate due to free magnetic energy dissipation. Here we present a first test of a new model developed to determine if the times of increases in the resistive heating rate in active region (AR) photospheres are correlated with the subsequent occurrence of M and X flares in the corona. A data driven, 3D, non-force-free magnetohydrodynamic model restricted to the near-photospheric region is used to compute time series of the complete current density and the resistive heating rate per unit volume [Q(t)] in each pixel in neutral line regions (NLRs) of 14 ARs. The model is driven by time series of the magnetic field B measured by the Helioseismic & Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. For each AR, the cumulative distribution function (CDF) of the values of the NLR area integral Qi(t) of Q(t) is found to be a scale invariant power law distribution essentially identical to the observed CDF for the total energy released in coronal flares. This suggests that coronal flares and the photospheric Qi are correlated, and powered by the same process. The model predicts spikes in Qi with values orders of magnitude above background values. These spikes are driven by spikes in the non-force free component of the current density. The times of these spikes are plausibly correlated with times of subsequent M or X flares a few hours to a few days later. The spikes occur on granulation scales, and may be signatures of heating in horizontal current sheets. It is also found that the times of relatively large values of the rate of change of the NLR unsigned magnetic flux are also plausibly correlated with the times of subsequent M and X flares, and spikes in Qi.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. J. Hagyard, D. Jr Smith, D. Teuber, and E. A. West, A quantitative study relating observed shear in photo-spheric magnetic fields to repeated flaring, Sol. Phys. 91(1), 115 (1984)

    ADS  Google Scholar 

  2. 2.

    C. J. Schrijver, Driving major solar flares and eruptions: A review, Adv. Space Res. 43(5), 739 (2009)

    ADS  Google Scholar 

  3. 3.

    L. Fletcher, B. R. Dennis, H. S. Hudson, S. Krucker, K. Phillips, A. Veronig, M. Battaglia, L. Bone, A. Caspi, Q. Chen, P. Gallagher, P. T. Grigis, H. Ji, W. Liu, R. O. Milligan, and M. Temmer, An observational overview of solar flares, Space Sci. Rev. 159(1–4), 19 (2011)

    ADS  Google Scholar 

  4. 4.

    H. S. Hudson, Global properties of solar flares, Space Sci. Rev. 158(1), 5 (2011)

    ADS  Google Scholar 

  5. 5.

    M. K. Georgoulis, V. S. Titov, and Z. Mikić, Non-neutralized electric current patterns in solar active regions: Origin of the shear-generating Lorentz force, Astrophys. J. 761(1), 61 (2012)

    ADS  Google Scholar 

  6. 6.

    H. Wang and C. Liu, Structure and evolution of magnetic fields associated with solar eruptions, Res. Astron. Astrophys. 15(2), 145 (2015)

    ADS  Google Scholar 

  7. 7.

    N. Gyenge, N. Ballai, and T. Baranyi, Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares, Mon. Not. R. Astron. Soc. 459(4), 3532 (2016)

    ADS  Google Scholar 

  8. 8.

    L. G. Balázs, N. Gyenge, M. B. Korsós, T. Baranyi, E. Forgács-Dajka, and I. Ballai, Statistical relationship between the succeeding solar flares detected by the RHESSI satellite, Mon. Not. R. Astron. Soc. 441(2), 1157 (2014)

    ADS  Google Scholar 

  9. 9.

    D. L. Chesny, H. M. Oluseyi, and N. B. Orange, Helium-abundance and other composition effects on the properties of stellar surface convection in solar-like main-sequence stars, Astrophys. J. 778(2), 117 (2013)

    Google Scholar 

  10. 10.

    T. Török, J. E. Leake, T. S. Titov, V. Archontis, Z. Mikić, M. G. Linton, K. Dalmasse, G. Aulanier, and B. Kliem, Distribution of electric currents in solar active regions, Astrophys. J. 782(1), L10 (2014)

    ADS  Google Scholar 

  11. 11.

    P. H. Scherrer, R. S. Bogart, R. I. Bush, J. T. Hoeksema, A. G. Kosovichev, J. Schou, W. Rosenberg, L. Springer, T. D. Tarbell, A. Title, C. J. Wolfson, and I. Zayer, The solar oscillations investigation — Michelson Doppler imager, Sol. Phys. 162(1–2), 129 (1995)

    ADS  Google Scholar 

  12. 12.

    R. C. Canfield, 1993, NASA-CR-194729, Solar Imaging Vector Magnetograph, Final Technical Report for NASA Grant NAGW-1454, 1 Aug. 1988–31 Jul. 1993 (Univ. of Hawaii)

  13. 13.

    D. A. Falconer, R. L. Moore, and G. A. Gary, Magnetic causes of solar coronal mass ejections: Dominance of the free magnetic energy over the magnetic twist alone, Astrophys. J. 644(2), 1258 (2006)

    ADS  Google Scholar 

  14. 14.

    D. A. Falconer, R. L. Moore, and G. A. Gary, Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity, Astrophys. J. 689(2), 1433 (2008)

    ADS  Google Scholar 

  15. 15.

    D. Falconer, A. F. Barghouty, I. Khazanov, and M. Moore, A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active-region free magnetic energy, Space Weather 9(4), S04003 (2011)

    ADS  Google Scholar 

  16. 16.

    D. A. Falconer, R. L. Moore, A. F. Barghouty, and I. Khazanov, Prior flaring as a complement to free magnetic energy for forecasting solar eruptions, Astrophys. J. 757(1), 32 (2012)

    ADS  Google Scholar 

  17. 17.

    D. A. Falconer, R. L. Moore, A. F. Barghouty, and I. Khazanov, MAG4 versus alternative techniques for forecasting active region flare productivity, Space Weather 12(5), 306 (2014)

    ADS  Google Scholar 

  18. 18.

    C. J. Schrijver, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting, Astrophys. J. 655(2), L117 (2007)

    ADS  Google Scholar 

  19. 19.

    M. B. Korsós, T. Baranyi, and A. Ludmány, Pre-flare dynamics of sunspot groups, Astrophys. J. 789(2), 107 (2014)

    ADS  Google Scholar 

  20. 20.

    M. B. Korsós, A. Ludmány, R. Erdélyi, and T. Baranyi, On flare predictability based on sunspot group evolution, Astrophys. J. 802(2), L21 (2015a)

    ADS  Google Scholar 

  21. 21.

    M. B. Korsós, N. Gyenge, T. Baranyi, and A. Ludmány, Dynamic precursors of flares in active region NOAA 10486, J. Astrophys. Astron. 36(1), 111 (2015b)

    ADS  Google Scholar 

  22. 22.

    M. B. Korsós and R. Erdélyi, On the state of a solar active region before flares and CMEs, Astrophys. J. 823(2), 153 (2016)

    ADS  Google Scholar 

  23. 23.

    M. K. Georgoulis and D. M. Rust, Quantitative forecasting of major solar flares, Astrophys. J. 661(1), L109 (2007)

    ADS  Google Scholar 

  24. 24.

    M. K. Georgoulis, 2011, in Physics of Sun and Star Spots, Proceedings IAU Symposium No. 273, 2010, pg. 495 (International Astronomical Union 2011)

    ADS  Google Scholar 

  25. 25.

    K. D. Leka and G. Barnes, Photospheric magnetic field properties of flaring versus flare-quiet active regions (I): Data, general approach, and sample results, Astrophys. J. 595(2), 1277 (2003a)

    ADS  Google Scholar 

  26. 26.

    K. D. Leka and G. Barnes, Photospheric magnetic field properties of flaring versus flare-quiet active regions (II): Discriminant analysis, Astrophys. J. 595(2), 1296 (2003b)

    ADS  Google Scholar 

  27. 27.

    K. D. Leka and G. Barnes, Photospheric magnetic field properties of flaring versus flare-quiet active regions (IV): A statistically significant sample, Astrophys. J. 656(2), 1173 (2007)

    ADS  Google Scholar 

  28. 28.

    G. Barnes, and K. D. Leka, Photospheric magnetic field properties of flaring versus flare-quiet active regions (III): Magnetic charge topology models, Astrophys. J. 646(2), 1303 (2006)

    ADS  Google Scholar 

  29. 29.

    Wang, J., Shi, Z., Wang, H. & Lü, Y. 1996, 456, 861

  30. 30.

    Y. Lü, J. Wang, and H. Wang, Shear angle of magnetic fields, Sol. Phys. 148(1), 119 (1993)

    ADS  Google Scholar 

  31. 31.

    G. Barnes, K. D. Leka, C. J. Schrijver, T. Colak, R. Qahwaji, O. W. Ashamari, Y. Yuan, J. Zhang, R. T. J. McAteer, D. S. Bloomfield, P. A. Higgins, P. T. Gallagher, D. A. Falconer, M. K. Georgoulis, M. S. Wheatland, C. Balch, T. Dunn, and E. L. Wagner, A comparison of flare forecasting methods (i): Results from the “all-clear” workshop, Astrophys. J. 829(2), 89 (2016)

    ADS  Google Scholar 

  32. 32.

    P. H. Scherrer, J. Schou, R. I. Bush, A. G. Kosovichev, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Jr Duvall, J. Zhao, A. M. Title, C. J. Schrijver, T. D. Tarbell, and S. Tomczyk, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO), Sol. Phys. 275(1), 207 (2012)

    ADS  Google Scholar 

  33. 33.

    M. G. Bobra, X. Sun, J. T. Hoeksema, M. Turmon, Y. Liu, K. Hayashi, G. Barnes, and K. D. Leka, The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: SHARPs — Space-weather HMI active region patches, Sol. Phys. 289(9), 3549 (2014)

    ADS  Google Scholar 

  34. 34.

    J. T. Hoeksema, Y. Liu, K. Hayashi, X. Sun, J. Schou, S. Couvidat, A. Norton, M. Bobra, R. Centeno, K. D. Leka, G. Barnes, and M. Turmon, The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: Overview and performance, Sol. Phys. 289(9), 3483 (2014)

    ADS  Google Scholar 

  35. 35.

    Å. Nordlund, R. F. Stein, and M. Asplund, Solar Surface Convection, Living Rev. Sol. Phys. 6, 2 (2009)

    ADS  Google Scholar 

  36. 36.

    B. W. Lites, K. D. Leka, A. Skumanich, V. Martínez Pillet, and T. Shimizu, Small-scale horizontal magnetic fields in the solar photosphere, Astrophys. J. 460, 1019 (1996)

    ADS  Google Scholar 

  37. 37.

    B. W. Lites, A. Skumanich, and V. Martínez Pillet, Astron. Astrophys. 333, 1053 (1998)

    ADS  Google Scholar 

  38. 38.

    B. W. Lites, M. Kubo, H. Socas-Navarro, T. Berger, Z. Frank, R. Shine, T. Tarbell, A. Title, K. Ichimoto, Y. Katsukawa, S. Tsuneta, Y. Suematsu, T. Shimizu, and S. Nagata, The horizontal magnetic flux of the quiet-Sun internetwork as observed with the hinode spectro-polarimeter, Astrophys. J. 672(2), 1237 (2008)

    ADS  Google Scholar 

  39. 39.

    D. Orozco Suárez, L. R. Bellot Rubio, J. C. del Toro Iniesta, S. Tsuneta, B. W. Lites, K. Ichimoto, Y. Katsukawa, S. Nagata, T. Shimizu, R. A. Shine, Y. Suematsu, T. D. Tarbell, and A. M. Title, Quiet-Sun internetwork magnetic fields from the inversion of Hinode measurements, Astrophys. J. 670(1), L61 (2007)

    ADS  Google Scholar 

  40. 40.

    B. W. Lites, The topology and behavior of magnetic fields emerging at the solar photosphere, Space Sci. Rev. 144(1–4), 197 (2009)

    ADS  Google Scholar 

  41. 41.

    S14 2014, Final Report for NASA Phase 1 SBIR Contract NNX14CG30P: “A New Class of Flare Prediction Algorithms: A Synthesis of Data, Pattern Recognition Algorithms, and First Principles Magnetohydrodynamics”, (Accepted by the NASA Technology Transfer System on December 22, 2014, Case No. GSC-17381-1). The report is available at goo.gl/jQh0YX. Note: The PI name on the report is not correct. The PI is Chiman Kwan. The report was written by the PI and M. L. Goodman, M. C. Cheung, and M. L. DeRosa, A method for data-driven simulations of evolving solar active regions, Astrophys. J. 757(2), 147 (2012)

    ADS  Google Scholar 

  42. 42.

    X. Sun, On the coordinate system of space-weather HMI active region patches (SHARPs): A technical note, arxiv: 1309.2392 (2013)

  43. 43.

    M. G. Bobra, 2014, private communication

  44. 44.

    J. D. Jackson, Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999

  45. 45.

    M. L. Goodman, On the efficiency of plasma heating by Pedersen current dissipation from the photosphere to the lower corona, Astron. Astrophys. 416(3), 1159 (2004)

    ADS  Google Scholar 

  46. 46.

    V. Smirnova, A. Richokainen, A. Solovev, J. Kallunki, A. Zhiltsov, and V. Ryzhov, Long quasi-periodic oscillations of sunspots and nearby magnetic structures, Astron. Astrophys. 552, A23 (2013a)

    ADS  Google Scholar 

  47. 47.

    V. Smirnova, V. I. Efremov, L. D. Parfinenko, A. Riehokainen, and A. A. Solov’ev, Artifacts of SDO/HMI data and long-period oscillations of sunspots, Astron. Astrophys. 554, A121 (2013b)

    ADS  Google Scholar 

  48. 48.

    P. V. Strekalova, Y. A. Nagovitsyn, A. Riehokainen, and V. V. Smirnova, Long-period variations in the magnetic field of small-scale solar structures., Geomagn. Aeron. 56(8), 1052 (2016)

    ADS  Google Scholar 

  49. 49.

    S. Couvidat, J. Schou, J. T. Hoeksema, R. S. Bogart, R. I. Bush, T. L. Jr Duvall, Y. Liu, A. A. Norton, and P. H. Scherrer, Observables processing for the helioseismic and magnetic imager instrument on the solar dynamics observatory, Sol. Phys. 291(7), 1887 (2016)

    ADS  Google Scholar 

  50. 50.

    Y. Liu, J. T. Hoeksema, P. H. Scherrer, J. Schou, S. Couvidat, R. I. Bush, K. Jr Duvall, X. Hayashi, X. Sun, and X. Zhao, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/Michelson Doppler imager, Sol. Phys. 279(1), 295 (2012)

    ADS  Google Scholar 

  51. 51.

    A. G. de Wijn, J. O. Stenflo, S. K. Solanki, and S. Tsuneta, Small-scale solar magnetic fields, Space Sci. Rev. 144(1–4), 275 (2009)

    ADS  Google Scholar 

  52. 52.

    H. Peter, H. Tian, W. Curdt, D. Schmit, D. Innes, B. De Pontieu, J. Lemen, A. Title, P. Boerner, N. Hurlburt, T. D. Tarbell, J. P. Wuelser, J. Martinez-Sykora, L. Kleint, L. Golub, S. McKillop, K. K. Reeves, S. Saar, P. Testa, C. Kankelborg, S. Jaeggli, M. Carlsson, and V. Hansteen, Hot explosions in the cool atmosphere of the Sun, Science 346(6207), 1255726 (2014)

    Google Scholar 

  53. 53.

    P. G. Judge, UV spectra, bombs, and the solar atmosphere, Astrophys. J. 808(2), 116 (2015)

    ADS  Google Scholar 

  54. 54.

    G. R. Gupta and D. Tripathi, IRIS and SDO observations of recurrent explosive events, Astrophys. J. 809(1), 82 (2015)

    ADS  Google Scholar 

  55. 55.

    G. J. M. Vissers, L. H. M. Rouppe van der Voort, R. J. Rutten, M. Carlsson, and B. De Pontieu, Ellerman bombs at high resolution (iii): Simultaneous observations with IRIS and SST, Astrophys. J. 812(1), 11 (2015)

    ADS  Google Scholar 

  56. 56.

    Y. H. Kim, V. Yurchyshyn, S. C. Bong, I. H. Cho, K. S. Cho, J. Lee, E. K. Lim, Y. D. Park, H. Yang, K. Ahn, P. R. Goode, and B. H. Jang, Simultaneous observation of a hot explosion by NST and IRIS, Astrophys. J. 810(1), 38 (2015)

    ADS  Google Scholar 

  57. 57.

    H. Tian, Z. Xu, J. He, and C. Madsen, Are IRIS bombs connected to Ellerman bombs? Astrophys. J. 824(2), 96 (2016)

    ADS  Google Scholar 

  58. 58.

    R. J. Rutten, H a features with hot onsets, Astron. Astrophys. 590, A124 (2016)

    ADS  Google Scholar 

  59. 59.

    R. J. Rutten, Solar H-alpha features with hot onsets, Astron. Astrophys. 598, A89 (2017)

    ADS  Google Scholar 

  60. 60.

    L. P. Chitta, H. Peter, P. R. Young, and Y. M. Huant, Compact solar UV burst triggered in a magnetic field with a fan-spine topology, Astron. Astrophys. 605, A49 (2017)

    ADS  Google Scholar 

  61. 61.

    H. Tian, V. Yurchyshyn, H. Peter, S. K. Solanki, P. R. Young, L. Ni, W. Cao, K. Ji, Y. Zhu, J. Zhang, T. Samanta, Y. Song, J. He, L. Wang, and Y. Chen, Frequently occurring reconnection jets from Sunspot light bridges, Astrophys. J. 854(2), 92 (2018a)

    ADS  Google Scholar 

  62. 62.

    H. Tian, X. Zhu, H. Peter, J. Zhao, T. Samanta, and Y. Chen, Magnetic reconnection at the earliest stage of solar flux emergence, Astrophys. J. 854(2), 174 (2018b)

    ADS  Google Scholar 

  63. 63.

    N. W. Watkins, G. Pruessner, S. C. Chapman, N. B. Crosby, and H. J. Jensen, 25 years of self-organized criticality: Concepts and controversies, Space Sci. Rev. 198(1), 3 (2016)

    ADS  Google Scholar 

  64. 64.

    P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59(4), 381 (1987)

    ADS  Google Scholar 

  65. 65.

    C. Tang, K. Wiesenfeld, P. Bak, S. Coppersmith, and P. Littlewood, Phase organization, Phys. Rev. Lett. 58(12), 1161 (1987)

    ADS  MathSciNet  Google Scholar 

  66. 66.

    L. Kadanoff, in: Springer Proceedings in Physics, V. 57, Evolutionary Trends in the Physical Sciences, Eds. M. Suzuki and R. Kubo, Springer-Verlag Berlin Heidelberg, 1991

  67. 67.

    P. G. Drazin, Nonlinear Systems, Cambridge University Press, Cambridge Texts in Applied Mathematics, 1992

  68. 68.

    P. Bak, How Nature Works, Springer Science + Business Media New York, 1996

  69. 69.

    M. E. J. Newman, Power laws, Pareto distributions and Zipf’s law, Contemp. Phys. 46(5), 323 (2005)

    ADS  Google Scholar 

  70. 70.

    D. W. Datlowe, M. J. Elcan, and H. S. Hudson, OSO-7 observations of solar X-rays in the energy range 10–100 keV, Sol. Phys. 39(1), 155 (1974)

    ADS  Google Scholar 

  71. 71.

    M. S. Wheatland, Flare frequency-size distributions for individual active regions, Astrophys. J. 532(2), 1209 (2000)

    ADS  Google Scholar 

  72. 72.

    M. S. Wheatland, Evidence for departure from a power-law flare size distribution for a small solar active region, Astrophys. J. 710(2), 1324 (2010)

    ADS  Google Scholar 

  73. 73.

    H. S. Hudson, Solar flares, microflares, nanoflares, and coronal heating, Sol. Phys. 133(2), 357 (1991)

    ADS  Google Scholar 

  74. 74.

    N. B. Crosby, M. J. Aschwanden, and B. R. Dennis, Frequency distributions and correlations of solar X-ray flare parameters, Sol. Phys. 143(2), 275 (1993)

    ADS  Google Scholar 

  75. 75.

    T. Shimizu, Publ. Astron. Soc. Jpn. 47, 251 (1995)

    ADS  Google Scholar 

  76. 76.

    M. J. Aschwanden, and C. E. Parnell, Nanoflare statistics from first principles: Fractal geometry and temperature synthesis, Astrophys. J. 572(2), 1048 (2002)

    ADS  Google Scholar 

  77. 77.

    M. J. Aschwanden, A statistical fractal-diffusive avalanche model of a slowly-driven self-organized criticality system, Astron. Astrophys. 539, A2 (2012)

    ADS  Google Scholar 

  78. 78.

    M. J. Aschwnaden, in: Self Organized Criticality Systems, Ed. M. J. Aschwanden, Open Academic Press: Berlin, Warsaw, 2013, http://www.openacademicpress.de/

  79. 79.

    M. J. Aschwanden, N. B. Crosby, M. Dimitropoulou, M. K. Georgoulis, S. Hergarten, J. McAteer, A. V. Milovanov, S. Mineshige, L. Morales, N. Nishizuka, G. Pruessner, R. Sanchez, A. S. Sharma, A. Strugarek, and V. Uritsky, 25 years of self-organized criticality: Solar and astrophysics, Space Sci. Rev. 198(1–4), 47 (2016)

    ADS  Google Scholar 

  80. 80.

    E. T. Lu and R. J. Hamilton, Avalanches and the distribution of solar flares, Astrophys. J. 380, L89 (1991)

    ADS  Google Scholar 

  81. 81.

    E. T. Lu, R. J. Hamilton, J. M. McTiernan, and K. R. Bromund, Solar flares and avalanches in driven dissipative systems, Astrophys. J. 412, 841 (1993)

    ADS  Google Scholar 

  82. 82.

    P. Charbonneau, S. W. McIntosh, H. Liu, and T. Bogdan, Avalanche models for solar flares, Sol. Phys. 203(2), 321 (2001)

    ADS  Google Scholar 

  83. 83.

    S. W. McIntosh, P. Charbonneau, T. J. Bogdan, H. Liu, and J. P. Norman, Geometrical properties of avalanches in self-organized critical models of solar flares, Phys. Rev. E 65(4), 046125 (2002)

    ADS  Google Scholar 

  84. 84.

    L. Vlahos and M. K. Georgoulis, On the self-similarity of unstable magnetic discontinuities in solar active regions, Astrophys. J. 603(1), L61 (2004)

    ADS  Google Scholar 

  85. 85.

    M. S. Wheatland and I. J. D. Craig, Toward a reconnection model for solar flare statistics, Astrophys. J. 595(1), 458 (2003)

    ADS  Google Scholar 

  86. 86.

    V. M. Uritsky, J. M. Davila, L. Ofman, and A. J. Coyner, Stochastic coupling of solar photosphere and corona, Astrophys. J. 769(1), 62 (2013)

    ADS  Google Scholar 

  87. 87.

    V. M. Uritsky and J. M. Davila, Spatiotemporal organization of energy release events in the quiet solar corona, Astrophys. J. 795(1), 15 (2014)

    ADS  Google Scholar 

  88. 88.

    R. A. Howard, J. D. Moses, A. Vourlidas, J. S. Newmark, D. G. Socker, et al., Sun earth connection coronal and heliospheric investigation (SECCHI), Space Sci. Rev. 136(1–4), 67 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a NASA Phase I SBIR award (Contract No. NNX14CG30P) to Applied Research LLC. This work made use of NASA’s Astrophysics Data System (ADS). The authors are grateful to the HMI team, especially Phil Scherrer, Todd Hoeksema, Yang Liu, Monica Bobra, and Rebecca Centeno for much advice about HMI data issues. MLG thanks the Jacobs Space Exploration Group and the NASA MSFC Natural Environments Branch-EV44 for partial support of this work. The authors are also grateful to the several referees whose comments significantly improved the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael L. Goodman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goodman, M.L., Kwan, C., Ayhan, B. et al. A new approach to solar flare prediction. Front. Phys. 15, 34601 (2020). https://doi.org/10.1007/s11467-020-0956-6

Download citation

Keywords

  • active regions
  • magnetic fields
  • flares
  • forecasting
  • heating
  • photosphere
  • models
  • magnetohydrodynamics