Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation

Abstract

We propose a novel scheme for measurement-device-independent (MDI) continuous-variable quantum key distribution (CVQKD) by simultaneously conducting classical communication and QKD, which is called “simultaneous MDI-CVQKD” protocol. In such protocol, each sender (Alice, Bob) can superimpose random numbers for QKD on classical information by taking advantage of the same weak coherent pulse and an untrusted third party (Charlie) decodes it by using the same coherent detectors, which could be appealing in practice due to that multiple purposes can be realized by employing only single communication system. What is more, the proposed protocol is MDI, which is immune to all possible side-channel attacks on practical detectors. Security results illustrate that the simultaneous MDI-CVQKD protocol can secure against arbitrary collective attacks. In addition, we employ phase-sensitive optical amplifiers to compensate the imperfection existing in practical detectors. With this technology, even common practical detectors can be used for detection through choosing a suitable optical amplifier gain. Furthermore, we also take the finite-size effect into consideration and show that the whole raw keys can be taken advantage of to generate the final secret key instead of sacrificing part of them for parameter estimation. Therefore, an enhanced performance of the simultaneous MDI-CVQKD protocol can be obtained in finite-size regime.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Advances in quantum cryptography, arXiv: 1906.01645 (2019)

    Google Scholar 

  2. 2.

    E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, Practical challenges in quantum key distribution, npj Quantum Inf. 2, 16025 (2016)

    Google Scholar 

  3. 3.

    H. K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8(8), 595 (2014)

    ADS  Google Scholar 

  4. 4.

    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)

    ADS  MATH  Google Scholar 

  5. 5.

    V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81(3), 1301 (2009)

    ADS  Google Scholar 

  6. 6.

    C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84(2), 621 (2012)

    ADS  Google Scholar 

  7. 7.

    L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)

    ADS  Google Scholar 

  8. 8.

    A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  9. 9.

    H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science 283(5410), 2050 (1999)

    ADS  Google Scholar 

  10. 10.

    J. Y. Wang, B. Yang, S. K. Liao, L. Zhang, Q. Shen, X. F. Hu, J. C. Wu, S. J. Yang, H. Jiang, Y. L. Tang, B. Zhong, H. Liang, W. Y. Liu, Y. H. Hu, Y. M. Huang, B. Qi, J. G. Ren, G. S. Pan, J. Yin, J. J. Jia, Y. A. Chen, K. Chen, C. Z. Peng, and J. W. Pan, Direct and full-scale experimental verifications towards ground–satellite quantum key distribution, Nat. Photonics 7(5), 387 (2013)

    ADS  Google Scholar 

  11. 11.

    M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, Overcoming the rate-distance limit of quantum key distribution without quantum repeaters, Nature 557(7705), 400 (2018)

    ADS  Google Scholar 

  12. 12.

    A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. Abdel-Aty, Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)

    Google Scholar 

  13. 13.

    F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett. 88(5), 057902 (2002)

    ADS  Google Scholar 

  14. 14.

    F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Quantum key distribution using gaussian-modulated coherent states, Nature 421(6920), 238 (2003)

    ADS  Google Scholar 

  15. 15.

    T. C. Ralph, Continuous variable quantum cryptography, Phys. Rev. A 61(1), 010303 (1999)

    MathSciNet  Google Scholar 

  16. 16.

    F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, Continuous-variable quantum key distribution with Gaussian modulation–the theory of practical implementations, Adv. Quantum Technol. 1(1), 1800011 (2018)

    Google Scholar 

  17. 17.

    B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A 76(5), 052323 (2007)

    ADS  Google Scholar 

  18. 18.

    X. D. Wu, Q. Liao, D. Huang, X. H. Wu, and Y. Guo, Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine, Chin. Phys. B 26(11), 110304 (2017)

    ADS  Google Scholar 

  19. 19.

    W. Liu, P. Huang, J. Peng, J. Fan, and G. Zeng, Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution, Phys. Rev. A 97(2), 022316 (2018)

    ADS  Google Scholar 

  20. 20.

    T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, Practical performance of real-time shot-noise measurement in continuous-variable quantum key distribution, Quantum Inform. Process. 17(1), 11 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  21. 21.

    R. García-Patrón and N. J. Cerf, Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution, Phys. Rev. Lett. 97, 190503 (2006)

    ADS  Google Scholar 

  22. 22.

    P. Huang, J. Fang, and G. Zeng, State-discrimination attack on discretely modulated continuous-variable quantum key distribution, Phys. Rev. A 89(4), 042330 (2014)

    ADS  Google Scholar 

  23. 23.

    X. D. Wu, Y. J. Wang, H. Zhong, Q. Liao, and Y. Guo, Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction, Front. Phys. 14(4), 41501 (2019)

    ADS  Google Scholar 

  24. 24.

    C. Xie, J. Zhang, Q. Pan, X. Jia, and K. Peng, Continuous variable quantum communication with bright entangled optical beams, Front. Phys. China 1(4), 383 (2006)

    ADS  Google Scholar 

  25. 25.

    S. Pirandola, S. L. Braunstein, and S. Lloyd, Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography, Phys. Rev. Lett. 101(20), 200504 (2008)

    ADS  Google Scholar 

  26. 26.

    R. Renner and J. I. Cirac, de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography, Phys. Rev. Lett. 102(11), 110504 (2009)

    ADS  Google Scholar 

  27. 27.

    A. Leverrier, F. Grosshans, and P. Grangier, Finite-size analysis of a continuous-variable quantum key distribution, Phys. Rev. A 81(6), 062343 (2010)

    ADS  Google Scholar 

  28. 28.

    F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks, Phys. Rev. Lett. 109(10), 100502 (2012)

    ADS  Google Scholar 

  29. 29.

    A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, Security of continuous-variable quantum key distribution against general attacks, Phys. Rev. Lett. 110(3), 030502 (2013)

    ADS  Google Scholar 

  30. 30.

    A. Leverrier, Composable security proof for continuous-variable quantum key distribution with coherent states, Phys. Rev. Lett. 114(7), 070501 (2015)

    ADS  Google Scholar 

  31. 31.

    D. Huang, P. Huang, D. Lin, and G. Zeng, Long-distance continuous-variable quantum key distribution by controlling excess noise, Sci. Rep. 6(1), 19201 (2016)

    ADS  Google Scholar 

  32. 32.

    D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, Field demonstration of a continuous-variable quantum key distribution network, Opt. Lett. 41(15), 3511 (2016)

    ADS  Google Scholar 

  33. 33.

    P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, Experimental demonstration of long-distance continuous-variable quantum key distribution, Nat. Photonics 7(5), 378 (2013)

    ADS  Google Scholar 

  34. 34.

    C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel, Sci. Rep. 5(1), 14607 (2015)

    ADS  Google Scholar 

  35. 35.

    G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett. 85(6), 1330 (2000)

    ADS  MATH  Google Scholar 

  36. 36.

    Z. Yuan, J. Dynes, and A. Shields, Avoiding the blinding attack in QKD, Nat. Photonics 4(12), 800 (2010)

    ADS  Google Scholar 

  37. 37.

    J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking on quantum key distribution using homodyne detection, Phys. Rev. A 89(3), 032304 (2014)

    ADS  Google Scholar 

  38. 38.

    P. Jouguet, S. Kunz-Jacques, and E. Diamanti, Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution, Phys. Rev. A 87(6), 062313 (2013)

    ADS  Google Scholar 

  39. 39.

    X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A 88(2), 022339 (2013)

    ADS  Google Scholar 

  40. 40.

    X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol, Phys. Rev. A 87(5), 052309 (2013)

    ADS  Google Scholar 

  41. 41.

    H. Qin, R. Kumar, V. Makarov, and R. Alléaume, Homodyne-detector-blinding attack in continuous-variable quantum key distribution, Phys. Rev. A 98(1), 012312 (2018)

    Google Scholar 

  42. 42.

    H. Qin, R. Kumar, and R. Alléaume, Saturation attack on continuous-variable quantum key distribution system, Proc. SPIE 8899, 88990N (2013)

    ADS  Google Scholar 

  43. 43.

    S. L. Braunstein and S. Pirandola, Side-channel-free quantum key distribution, Phys. Rev. Lett. 108(13), 130502 (2012)

    ADS  Google Scholar 

  44. 44.

    H. K. Lo, M. Curty, and B. Qi, Measurement-device-independent quantum key distribution, Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  45. 45.

    F. Xu, M. Curty, B. Qi, and H. K. Lo, Practical aspects of measurement-device-independent quantum key distribution, New J. Phys. 15(11), 113007 (2013)

    ADS  MATH  Google Scholar 

  46. 46.

    X. B. Wang, Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors, Phys. Rev. A 87(1), 012320 (2013)

    ADS  Google Scholar 

  47. 47.

    M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, Finite-key analysis for measurement-device-independent quantum key distribution, Nat. Commun. 5(1), 3732 (2014)

    ADS  Google Scholar 

  48. 48.

    C. Ottaviani, G. Spedalieri, S. L. Braunstein, and S. Pirandola, Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration, Phys. Rev. A 91(2), 022320 (2015)

    ADS  MathSciNet  Google Scholar 

  49. 49.

    P. Papanastasiou, C. Ottaviani, and S. Pirandola, Finitesize analysis of measurement-device-independent quantum cryptography with continuous variables, Phys. Rev. A 96(4), 042332 (2017)

    ADS  Google Scholar 

  50. 50.

    Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett. 111(13), 130502 (2013)

    ADS  Google Scholar 

  51. 51.

    T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid, Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits, Phys. Rev. A 88(5), 052303 (2013)

    ADS  Google Scholar 

  52. 52.

    Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H. K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, Phys. Rev. Lett. 112(19), 190503 (2014)

    ADS  Google Scholar 

  53. 53.

    H. W. Li, Z. Q. Yin, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, Quantum key distribution based on quantum dimension and independent devices, Phys. Rev. A 89(3), 032302 (2014)

    ADS  Google Scholar 

  54. 54.

    F. Xu, B. Qi, Z. Liao, and H. K. Lo, Long distance measurement-device-independent quantum key distribution with entangled photon sources, Appl. Phys. Lett. 103(6), 061101 (2013)

    ADS  Google Scholar 

  55. 55.

    X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, and L. M. Liang, Gaussian-modulated coherent-state measurement-device-independent quantum key distribution, Phys. Rev. A 89(4), 042335 (2014)

    ADS  Google Scholar 

  56. 56.

    S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, High-rate measurement-device-independent quantum cryptography, Nat. Photonics 9(6), 397 (2015)

    ADS  Google Scholar 

  57. 57.

    Z. Li, Y. C. Zhang, F. Xu, X. Peng, and H. Guo, Continuous-variable measurement-device-independent quantum key distribution, Phys. Rev. A 89(5), 052301 (2014)

    ADS  Google Scholar 

  58. 58.

    B. Qi, Simultaneous classical communication and quantum key distribution using continuous variables, Phys. Rev. A 94(4), 042340 (2016)

    ADS  Google Scholar 

  59. 59.

    B. Qi and C. C. W. Lim, Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator, Phys. Rev. Appl. 9(5), 054008 (2018)

    ADS  Google Scholar 

  60. 60.

    X. Wu, Y. Wang, Q. Liao, H. Zhong, and Y. Guo, Simultaneous classical communication and quantum key distribution based on plug-and-play configuration with an optical amplifier, Entropy 21(4), 333 (2019)

    ADS  MathSciNet  Google Scholar 

  61. 61.

    T. Wang, P. Huang, S. Wang, and G. Zeng, Carrierphase estimation for simultaneous quantum key distribution and classical communication using a real local oscillator, Phys. Rev. A 99(2), 022318 (2019)

    ADS  Google Scholar 

  62. 62.

    W. A. Hofer, Solving the Einstein-Podolsky-Rosen puzzle: The origin of non-locality in Aspect-type experiments, Front. Phys. 7(5), 504 (2012)

    ADS  Google Scholar 

  63. 63.

    M. Navascués and A. Acín, Security bounds for continuous variables quantum key distribution, Phys. Rev. Lett. 94(2), 020505 (2005)

    ADS  Google Scholar 

  64. 64.

    S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fundamental limits of repeaterless quantum communications, Nat. Commun. 8(1), 15043 (2017)

    ADS  Google Scholar 

  65. 65.

    S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers, J. Phys. At. Mol. Opt. Phys. 42(11), 114014 (2009)

    ADS  Google Scholar 

  66. 66.

    X. Zhang, Y. Zhang, Y. Zhao, X. Wang, S. Yu, and H. Guo, Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution, Phys. Rev. A 96(4), 042334 (2017)

    ADS  Google Scholar 

  67. 67.

    C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, Parameter estimation with almost no public communication for continuous-variable quantum key distribution, Phys. Rev. Lett. 120(22), 220505 (2018)

    ADS  Google Scholar 

  68. 68.

    Q. Liao, Y. Wang, D. Huang, and Y. Guo, Dualphase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution, Opt. Express 26(16), 19907 (2018)

    ADS  Google Scholar 

  69. 69.

    X. Wu, Y. Wang, S. Li, W. Zhang, D. Huang, and Y. Guo, Security analysis of passive measurement-device-independent continuous-variable quantum key distribution with almost no public communication, Quantum Inform. Process. 18(12), 372 (2019)

    ADS  MathSciNet  Google Scholar 

  70. 70.

    C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks, Phys. Rev. A 97(5), 052327 (2018)

    ADS  Google Scholar 

  71. 71.

    B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection, Phys. Rev. X 5(4), 041009 (2015)

    Google Scholar 

  72. 72.

    D. B. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, Self-referenced continuous-variable quantum key distribution protocol, Phys. Rev. X 5(4), 041010 (2015)

    Google Scholar 

  73. 73.

    D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, High-speed continuous-variable quantum key distribution without sending a local oscillator, Opt. Lett. 40(16), 3695 (2015)

    ADS  Google Scholar 

  74. 74.

    X. Zhang, Y. Zhang, Z. Li, S. Yu, and H. Guo, IEEE Photonics J. 10, 1 (2018)

    Google Scholar 

  75. 75.

    G.-P. Sanchez, Universite Libre de Bruxelles, 2007

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61801522) and National Nature Science Foundation of Hunan Province, China (Grant No. 2019JJ40352).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Duan Huang or Ying Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, XD., Wang, YJ., Huang, D. et al. Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation. Front. Phys. 15, 31601 (2020). https://doi.org/10.1007/s11467-020-0954-8

Download citation

Keywords

  • measurement-device-independent
  • continuous-variable quantum key distribution
  • simultaneous
  • realistic detector compensation