Mechanically scanned leaky-wave antenna based on a topological one-way waveguide

Abstract

We propose a uniform backfire-to-endfire leaky-wave antenna (LWA) based on a topological one-way waveguide under external bias magnetic field. We systematically analyze the dispersion, showing that the proposed structure supports leaky mode arisen from total internal reflection. By means of tuning frequency or magnetic field, we obtain fixed-bias frequency and fixed-frequency bias LWA with continuous beam scanning from backward, broadside to forward direction. More importantly, we, for the first time, demonstrate that this proposed LWA shows mechanical tunability, allowing us to manipulate the radiation direction from backward, broadside to forward direction by mechanically tuning the air layer thickness. The simulated results show that our system exhibits super low 3dB beam width, high radiation efficiency as well as high antenna gain. Being provided such multiple controlled (especially mechanically) beam scanning manners, the present LWA paves an advanced approach for continuous beam scanning, holding a great potential for applications in modern communication and radar system.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    W. W. Hansen, U.S. Patent 2 402 622 (1940)

    Google Scholar 

  2. 2.

    D. Comite, S. K. Podilchak, P. Baccarelli, P. Burghignoli, A. Galli, A. P. Freundorfer, and Y. M. M. Antar, Analysis and design of a compact leaky-wave antenna for wideband broadside radiation, Sci. Rep. 8(1), 17741 (2018)

    ADS  Article  Google Scholar 

  3. 3.

    J. L. Gomez-Tornero, Analysis and design of conformal tapered leaky-wave antennas, IEEE Antennas Wirel. Propag. Lett. 10, 1068 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    L. Wang, J. L. Gomez-Tornero, E. Rajo-Iglesias, and O. Quevedo-Teruel, Low-dispersive leaky-wave antenna integrated in Groove gap waveguide technology, IEEE Trans. Antenn. Propag. 66(11), 99 (2018)

    Google Scholar 

  5. 5.

    J. Xu, W. Hong, H. Tang, Z. Kuai, and K. Wu, Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter-wave applications, IEEE Antennas Wirel. Propag. Lett. 7, 85 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    D. R. Jackson, C. Caloz, and T. Itoh, Leaky-wave antennas, IEEE Proc. 100(7), 2194 (2012)

    Article  Google Scholar 

  7. 7.

    Q. Song, S. Campione, O. Boyraz, and F. Capolino, Silicon-based optical leaky wave antenna with narrow beam radiation, Opt. Express 19(9), 8735 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, Holographic surface leaky-wave lenses with circularly-polarized focused near-fields (I): Concept, design and analysis theory, IEEE Trans. Antenn. Propag. 61(7), 3475 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    A. Lai, C. Caloz and T. Itoh, Composite right/lefthanded transmission line metamaterials, IEEE Microw. Mag. 5(3), 34 (2004)

    Article  Google Scholar 

  10. 10.

    J. Y. Yin, J. Ren, Q. Zhang, H. C. Zhang, Y. Q. Liu, Y. B. Li, X. Wan, and T. Jun Cui, Frequency-controlled broad-angle beam scanning of patch array fed by Spoof surface plasmon polaritons, IEEE Trans. Antenn. Propag. 64(12), 5181 (2016)

    ADS  Article  Google Scholar 

  11. 11.

    L. Liu, C. Caloz, and T. Itoh, Dominant mode leakywave antenna with backfire-to-endfire scanning capability, Electron. Lett. 38(23), 1414 (2002)

    ADS  Article  Google Scholar 

  12. 12.

    L. Goldstone and A. Oliner, Leaky-wave antennas (I): Rectangular waveguides, IEEE Trans. Antenn. Propag. 7(4), 307 (2003)

    ADS  Article  Google Scholar 

  13. 13.

    W. Hong, T. L. Chen, C. Y. Chang, J. W. Sheen, and Y. D. Lin, Broadband tapered microstrip leaky-wave antenna, IEEE Trans. Antenn. Propag. 51(8), 1922 (2003)

    ADS  Article  Google Scholar 

  14. 14.

    M. Wang, H. F. Ma, H. C. Zhang, W. X. Tang, X. R. Zhang, and T. J. Cui, Frequency-fixed beam-scanning leaky-wave antenna using electronically controllable corrugated microstrip line, IEEE Trans. Antenn. Propag. 66(9), 4449 (2018)

    ADS  Article  Google Scholar 

  15. 15.

    M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, W. X. Jiang, and T. J. Cui, A dual-band electronic-scanning leaky-wave antenna based on a corrugated microstrip line, IEEE Trans. Antenn. Propag. 67(5), 3433 (2019)

    ADS  Article  Google Scholar 

  16. 16.

    D. K. Karmokar, K. P. Esselle, and S. G. Hay, Fixed-frequency bBeam steering of microstrip leaky-wave Antennas using binary switches, IEEE Trans. Antenn. Propag. 64(6), 2146 (2016)

    ADS  Article  Google Scholar 

  17. 17.

    R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, Electronically steerable 1-D Fabry–Perot leaky-wave antenna employing a tunable high impedance surface, IEEE Trans. Antenn. Propag. 60(11), 5046 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, New York, 1962

    Google Scholar 

  19. 19.

    A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, Surface polaritons on semi-infinite gyromagnetic media, J. Phys. C 6(7), 1266 (1973)

    ADS  Article  Google Scholar 

  20. 20.

    T. Kodera and C. Caloz, Integrated leaky-wave antenna–duplexer/diplexer using CRLH uniform ferrite-loaded open waveguide, IEEE Trans. Antenn. Propag. 58(8), 2508 (2010)

    ADS  Article  Google Scholar 

  21. 21.

    T. Ueda and M. Tsutsumi, Left-handed transmission characteristics of rectangular waveguides periodically loaded with ferrite, IEEE Trans. Magn. 41(10), 3532 (2005)

    ADS  Article  Google Scholar 

  22. 22.

    T. Ueda and M. Tsutsumi, Nonreciprocal left-handed transmission characteristics of microstriplines on ferrite substrate, IET Microw. Antennas Propag. 1(2), 349 (2007)

    Article  Google Scholar 

  23. 23.

    Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)

    ADS  Article  Google Scholar 

  25. 25.

    A. B. Khanikaev and G. Shvets, Two-dimensional topological photonics, Nat. Photonics 11(12), 763 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    S. C. Zhang, Z. Fang, and Q. K. Xue, Advances in topological materials, Front. Phys. 7(2), 147 (2012)

    Article  Google Scholar 

  27. 27.

    T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    T. Kodera and C. Caloz, Uniform ferrite-loaded open waveguide structure with CRLH response and its application to a novel backfire-to-endfire leaky-wave antenna, IEEE Trans. Microw. Theory Tech. 57(4), 784 (2009)

    Google Scholar 

  29. 29.

    Q. Shen, L. F. Shen, W. D. Min, C. Wu, X. H. Deng, and S. S. Xiao, Trapping a magnetic rainbow by using a one-way magnetostatic-like mode, Opt. Mater. Express 9(11), 4399 (2019)

    ADS  Article  Google Scholar 

  30. 30.

    X. Deng, L. Hong, X. Zheng, and L. Shen, One-way regular electromagnetic mode immune to backscattering, Appl. Opt. 54(14), 4608 (2015)

    ADS  Article  Google Scholar 

  31. 31.

    Q. Shen, L. J. Hong, X. H. Deng, and L. F. Shen, Completely stopping microwaves with extremely enhanced magnetic fields, Sci. Rep. 8(1), 15811 (2018)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 61372005), the National Natural Science Foundation of China (NSFC) under the key project (Grant No. 41331070), the Natural Science Foundation of Ningbo (No. 2019A610081), and Zhejiang Provincial Natural Science Foundation of China (No. LY20F050006).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Weidong Min or Sanshui Xiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, Q., You, Y., Xu, J. et al. Mechanically scanned leaky-wave antenna based on a topological one-way waveguide. Front. Phys. 15, 33601 (2020). https://doi.org/10.1007/s11467-020-0953-9

Download citation

Keywords

  • leaky-wave antenna
  • one-way waveguide
  • magneto-optic materials