Abstract
We propose a uniform backfire-to-endfire leaky-wave antenna (LWA) based on a topological one-way waveguide under external bias magnetic field. We systematically analyze the dispersion, showing that the proposed structure supports leaky mode arisen from total internal reflection. By means of tuning frequency or magnetic field, we obtain fixed-bias frequency and fixed-frequency bias LWA with continuous beam scanning from backward, broadside to forward direction. More importantly, we, for the first time, demonstrate that this proposed LWA shows mechanical tunability, allowing us to manipulate the radiation direction from backward, broadside to forward direction by mechanically tuning the air layer thickness. The simulated results show that our system exhibits super low 3dB beam width, high radiation efficiency as well as high antenna gain. Being provided such multiple controlled (especially mechanically) beam scanning manners, the present LWA paves an advanced approach for continuous beam scanning, holding a great potential for applications in modern communication and radar system.
This is a preview of subscription content, access via your institution.
References
- 1.
W. W. Hansen, U.S. Patent 2 402 622 (1940)
- 2.
D. Comite, S. K. Podilchak, P. Baccarelli, P. Burghignoli, A. Galli, A. P. Freundorfer, and Y. M. M. Antar, Analysis and design of a compact leaky-wave antenna for wideband broadside radiation, Sci. Rep. 8(1), 17741 (2018)
- 3.
J. L. Gomez-Tornero, Analysis and design of conformal tapered leaky-wave antennas, IEEE Antennas Wirel. Propag. Lett. 10, 1068 (2011)
- 4.
L. Wang, J. L. Gomez-Tornero, E. Rajo-Iglesias, and O. Quevedo-Teruel, Low-dispersive leaky-wave antenna integrated in Groove gap waveguide technology, IEEE Trans. Antenn. Propag. 66(11), 99 (2018)
- 5.
J. Xu, W. Hong, H. Tang, Z. Kuai, and K. Wu, Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter-wave applications, IEEE Antennas Wirel. Propag. Lett. 7, 85 (2008)
- 6.
D. R. Jackson, C. Caloz, and T. Itoh, Leaky-wave antennas, IEEE Proc. 100(7), 2194 (2012)
- 7.
Q. Song, S. Campione, O. Boyraz, and F. Capolino, Silicon-based optical leaky wave antenna with narrow beam radiation, Opt. Express 19(9), 8735 (2011)
- 8.
J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, Holographic surface leaky-wave lenses with circularly-polarized focused near-fields (I): Concept, design and analysis theory, IEEE Trans. Antenn. Propag. 61(7), 3475 (2013)
- 9.
A. Lai, C. Caloz and T. Itoh, Composite right/lefthanded transmission line metamaterials, IEEE Microw. Mag. 5(3), 34 (2004)
- 10.
J. Y. Yin, J. Ren, Q. Zhang, H. C. Zhang, Y. Q. Liu, Y. B. Li, X. Wan, and T. Jun Cui, Frequency-controlled broad-angle beam scanning of patch array fed by Spoof surface plasmon polaritons, IEEE Trans. Antenn. Propag. 64(12), 5181 (2016)
- 11.
L. Liu, C. Caloz, and T. Itoh, Dominant mode leakywave antenna with backfire-to-endfire scanning capability, Electron. Lett. 38(23), 1414 (2002)
- 12.
L. Goldstone and A. Oliner, Leaky-wave antennas (I): Rectangular waveguides, IEEE Trans. Antenn. Propag. 7(4), 307 (2003)
- 13.
W. Hong, T. L. Chen, C. Y. Chang, J. W. Sheen, and Y. D. Lin, Broadband tapered microstrip leaky-wave antenna, IEEE Trans. Antenn. Propag. 51(8), 1922 (2003)
- 14.
M. Wang, H. F. Ma, H. C. Zhang, W. X. Tang, X. R. Zhang, and T. J. Cui, Frequency-fixed beam-scanning leaky-wave antenna using electronically controllable corrugated microstrip line, IEEE Trans. Antenn. Propag. 66(9), 4449 (2018)
- 15.
M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, W. X. Jiang, and T. J. Cui, A dual-band electronic-scanning leaky-wave antenna based on a corrugated microstrip line, IEEE Trans. Antenn. Propag. 67(5), 3433 (2019)
- 16.
D. K. Karmokar, K. P. Esselle, and S. G. Hay, Fixed-frequency bBeam steering of microstrip leaky-wave Antennas using binary switches, IEEE Trans. Antenn. Propag. 64(6), 2146 (2016)
- 17.
R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, Electronically steerable 1-D Fabry–Perot leaky-wave antenna employing a tunable high impedance surface, IEEE Trans. Antenn. Propag. 60(11), 5046 (2012)
- 18.
B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, New York, 1962
- 19.
A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, Surface polaritons on semi-infinite gyromagnetic media, J. Phys. C 6(7), 1266 (1973)
- 20.
T. Kodera and C. Caloz, Integrated leaky-wave antenna–duplexer/diplexer using CRLH uniform ferrite-loaded open waveguide, IEEE Trans. Antenn. Propag. 58(8), 2508 (2010)
- 21.
T. Ueda and M. Tsutsumi, Left-handed transmission characteristics of rectangular waveguides periodically loaded with ferrite, IEEE Trans. Magn. 41(10), 3532 (2005)
- 22.
T. Ueda and M. Tsutsumi, Nonreciprocal left-handed transmission characteristics of microstriplines on ferrite substrate, IET Microw. Antennas Propag. 1(2), 349 (2007)
- 23.
Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)
- 24.
R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
- 25.
A. B. Khanikaev and G. Shvets, Two-dimensional topological photonics, Nat. Photonics 11(12), 763 (2017)
- 26.
S. C. Zhang, Z. Fang, and Q. K. Xue, Advances in topological materials, Front. Phys. 7(2), 147 (2012)
- 27.
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
- 28.
T. Kodera and C. Caloz, Uniform ferrite-loaded open waveguide structure with CRLH response and its application to a novel backfire-to-endfire leaky-wave antenna, IEEE Trans. Microw. Theory Tech. 57(4), 784 (2009)
- 29.
Q. Shen, L. F. Shen, W. D. Min, C. Wu, X. H. Deng, and S. S. Xiao, Trapping a magnetic rainbow by using a one-way magnetostatic-like mode, Opt. Mater. Express 9(11), 4399 (2019)
- 30.
X. Deng, L. Hong, X. Zheng, and L. Shen, One-way regular electromagnetic mode immune to backscattering, Appl. Opt. 54(14), 4608 (2015)
- 31.
Q. Shen, L. J. Hong, X. H. Deng, and L. F. Shen, Completely stopping microwaves with extremely enhanced magnetic fields, Sci. Rep. 8(1), 15811 (2018)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 61372005), the National Natural Science Foundation of China (NSFC) under the key project (Grant No. 41331070), the Natural Science Foundation of Ningbo (No. 2019A610081), and Zhejiang Provincial Natural Science Foundation of China (No. LY20F050006).
Author information
Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Shen, Q., You, Y., Xu, J. et al. Mechanically scanned leaky-wave antenna based on a topological one-way waveguide. Front. Phys. 15, 33601 (2020). https://doi.org/10.1007/s11467-020-0953-9
Received:
Accepted:
Published:
Keywords
- leaky-wave antenna
- one-way waveguide
- magneto-optic materials