Perfect optical nonreciprocity in a double-cavity optomechanical system

Abstract

Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology. Here, we propose to take advantage of the interference between optomechanical interaction and linearly-coupled interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system. Particularly, we have derived essential conditions for perfect optical nonreciprocity and analysed properties of the optical nonreciprocal transmission. These results can be used to control optical transmission in quantum information processing.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, What is — and what is not — an optical isolator, Nat. Photonics 7(8), 579 (2013)

    ADS  Article  Google Scholar 

  2. 2.

    C. L. Hogan, The ferromagnetic faraday effect at microwave frequencies and its applications, Bell Syst. Tech. J. 31(1), 1 (1952)

    Article  Google Scholar 

  3. 3.

    L. J. Aplet and J. W. Carson, A Faraday effect optical isolator, Appl. Opt. 3(4), 544 (1964)

    ADS  Article  Google Scholar 

  4. 4.

    L. Ranzani and J. Aumentado, Graph-based analysis of nonreciprocity in coupled-mode systems, New J. Phys. 17(2), 023024 (2015)

    ADS  Article  Google Scholar 

  5. 5.

    B. He, L. Yang, X. Jiang, and M. Xiao, Transmission nonreciprocity in a mutually coupled circulating structure, Phys. Rev. Lett. 120(20), 203904 (2018)

    ADS  Article  Google Scholar 

  6. 6.

    C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, Brillouin-scattering-induced transparency and non-reciprocal light storage, Nat. Commun. 6(1), 6193 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    K. Fang, Z. Yu, and S. Fan, Photonic Aharonov-Bohm effect based on dynamic modulation, Phys. Rev. Lett. 108(15), 153901 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)

    ADS  Article  Google Scholar 

  9. 9.

    Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)

    ADS  Article  Google Scholar 

  12. 12.

    I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    B. He, L. Yang, Q. Lin, and M. Xiao, Radiation pressure cooling as a quantum dynamical process, Phys. Rev. Lett. 118(23), 233604 (2017)

    ADS  Article  Google Scholar 

  14. 14.

    G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803(R) (2010)

    ADS  Article  Google Scholar 

  15. 15.

    S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically induced transparency, Science 330(6010), 1520 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Transient optomechanically induced transparency in a silica microsphere, Phys. Rev. A 87(5), 055802 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    Y. C. Liu, B. B. Li, and Y. F. Xiao, Electromagnetically induced transparency in optical microcavities, Nanophotonics 6(5), 789 (2017)

    Article  Google Scholar 

  18. 18.

    H. Xiong and Y. Wu, Fundamentals and applications of optomechanically induced transparency, Appl. Phys. Rev. 5(3), 031305 (2018)

    ADS  Article  Google Scholar 

  19. 19.

    H. Zhang, F. Saif, Y. Jiao, and H. Jing, Loss-induced transparency in optomechanics, Opt. Express 26(19), 25199 (2018)

    ADS  Article  Google Scholar 

  20. 20.

    X. B. Yan, W. Z. Jia, Y. Li, J. H. Wu, X. L. Li, and H. W. Mu, Optomechanically induced amplification and perfect transparency in double-cavity optomechanics, Front. Phys. 10(3), 104202 (2015)

    ADS  Article  Google Scholar 

  21. 21.

    F. X. Sun, D. Mao, Y. T. Dai, Z. Ficek, Q. Y. He, and Q. H. Gong, Phase control of entanglement and quantum steering in a three-mode optomechanical system, New J. Phys. 19(12), 123039 (2017)

    ADS  Article  Google Scholar 

  22. 22.

    L. Tian, Robust photon entanglement via quantum interference in optomechanical interfaces, Phys. Rev. Lett. 110(23), 233602 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    Z. J. Deng, S. J. M. Habraken, and F. Marquardt, Entanglement rate for Gaussian continuous variable beams, New J. Phys. 18(6), 063022 (2016)

    Article  Google Scholar 

  24. 24.

    Z. J. Deng, X. B. Yan, Y. D. Wang, and C. W. Wu, Optimizing the output-photon entanglement in multimode optomechanical systems, Phys. Rev. A 93(3), 033842 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    X. B. Yan, Enhanced output entanglement with reservoir engineering, Phys. Rev. A 96(5), 053831 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    X. B. Yan, Z. J. Deng, X. D. Tian, and J. H. Wu, Entanglement optimization of filtered output fields in cavity optomechanics, Opt. Express 27(17), 24393 (2019)

    ADS  Article  Google Scholar 

  27. 27.

    Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)

    Article  Google Scholar 

  28. 28.

    J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photonphonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)

    ADS  Article  Google Scholar 

  29. 29.

    K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, Signatures of nonlinear cavity optomechanics in the weak coupling regime, Phys. Rev. Lett. 111(5), 053603 (2013)

    ADS  Article  Google Scholar 

  30. 30.

    X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)

    Article  Google Scholar 

  31. 31.

    X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, and J. H. Wu, Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system, Opt. Express 22(5), 4886 (2014)

    ADS  Article  Google Scholar 

  32. 32.

    G. S. Agarwal and S. Huang, Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes, New J. Phys. 16(3), 033023 (2014)

    ADS  Article  Google Scholar 

  33. 33.

    M. M. Zhao, Z. Qian, B. P. Hou, Y. Liu, and Y. H. Zhao, Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys. 14(2), 22601 (2019)

    ADS  Article  Google Scholar 

  34. 34.

    S. Manipatruni, J. T. Robinson, and M. Lipson, Optical nonreciprocity in optomechanical structures, Phys. Rev. Lett. 102(21), 213903 (2009)

    ADS  Article  Google Scholar 

  35. 35.

    M. Hafezi and P. Rabl, Optomechanically induced nonreciprocity in microring resonators, Opt. Express 20(7), 7672 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, Optical nonreciprocity in asymmetric optomechanical couplers, Sci. Rep. 5(1), 8657 (2015)

    ADS  Article  Google Scholar 

  37. 37.

    M. A. Miri, F. Ruesink, E. Verhagen, and A. Alù, Optical nonreciprocity based on optomechanical coupling, Phys. Rev. Appl. 7(6), 064014 (2017)

    ADS  Article  Google Scholar 

  38. 38.

    D. L. Sounas and A. Alù, Non-reciprocal photonics based on time modulation, Nat. Photonics 11(12), 774 (2017)

    ADS  Article  Google Scholar 

  39. 39.

    F. Ruesink, M. A. Miri, A. Alù, and E. Verhagen, Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7(1), 13662 (2016)

    ADS  Article  Google Scholar 

  40. 40.

    Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, and C. H. Dong, Experimental realization of optomechanically induced nonreciprocity, Nat. Photonics 10(10), 657 (2016)

    ADS  Article  Google Scholar 

  41. 41.

    G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Demonstration of efficient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X 7(3), 031001 (2017)

    Google Scholar 

  42. 42.

    N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, Nonreciprocal reconfigurable microwave optomechanical circuit, Nat. Commun. 8(1), 604 (2017)

    ADS  Article  Google Scholar 

  43. 43.

    S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. B. Dieterle, O. Painter, and J. M. Fink, Mechanical on-chip microwave circulator, Nat. Commun. 8(1), 953 (2017)

    ADS  Article  Google Scholar 

  44. 44.

    K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13(5), 465 (2017)

    Article  Google Scholar 

  45. 45.

    F. Ruesink, J. P. Mathew, M. A. Miri, A. Alù, and E. Verhagen, Optical circulation in a multimode optomechanical resonator, Nat. Commun. 9(1), 1798 (2018)

    ADS  Article  Google Scholar 

  46. 46.

    X. W. Xu and Y. Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91(5), 053854 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  47. 47.

    X. W. Xu, Y. Li, A. X. Chen, and Y. Liu, Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems, Phys. Rev. A 93(2), 023827 (2016)

    ADS  Article  Google Scholar 

  48. 48.

    L. Tian and Z. Li, Nonreciprocal quantum-state conversion between microwave and optical photons, Phys. Rev. A 96(1), 013808 (2017)

    ADS  Article  Google Scholar 

  49. 49.

    C. C. Xia, X. B. Yan, X. D. Tian, and F. Gao, Ideal optical isolator with a two-cavity optomechanical system, Opt. Commun. 451, 197 (2019)

    ADS  Article  Google Scholar 

  50. 50.

    D. Malz, L. D. Tóth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, Quantum-limited directional amplifiers with optomechanics, Phys. Rev. Lett. 120(2), 023601 (2018)

    ADS  Article  Google Scholar 

  51. 51.

    S. J. M. Habraken, K. Stannigel, M. D. Lukin, P. Zoller, and P. Rabl, Continuous mode cooling and phonon routers for phononic quantum networks, New J. Phys. 14(11), 115004 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    A. Seif, W. DeGottardi, K. Esfarjani, and M. Hafezi, Thermal management and non-reciprocal control of phonon flow via optomechanics, Nat. Commun. 9(1), 1207 (2018)

    ADS  Article  Google Scholar 

  53. 53.

    J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183), 72 (2008)

    ADS  Article  Google Scholar 

  54. 54.

    A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, Dispersive optomechanics: a membrane inside a cavity, New J. Phys. 10(9), 095008 (2008)

    ADS  Article  Google Scholar 

  55. 55.

    J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6(9), 707 (2010)

    Article  Google Scholar 

  56. 56.

    M. Ludwig, A. Safavi-Naeini, O. Painter, and F. Marquardt, Enhanced quantum nonlinearities in a two-mode optomechanical system, Phys. Rev. Lett. 109(6), 063601 (2012)

    ADS  Article  Google Scholar 

  57. 57.

    D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, Berlin, 1994

    Google Scholar 

Download references

Acknowledgments

L. Yang was supported by the National Natural Science Foundation of China (Grant No. 11804066), the China Postdoctoral Science Foundation (Grant No. 2018M630337), and Fundamental Research Funds for the Central Universities (Grant No. 3072019CFM0405).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Bo Yan or Liu Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Lu, H., Gao, F. et al. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys. 14, 52601 (2019). https://doi.org/10.1007/s11467-019-0922-3

Download citation

Keywords

  • optomechanics
  • optical nonreciprocity
  • nonreciprocal transmission