Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction

Abstract

Plug-and-play dual-phase-modulated continuous-variable quantum key distribution (CVQKD) protocol can effectively solve the security loopholes associated with transmitting local oscillator (LO). However, this protocol has larger excess noise compared with one-way Gaussian-modulated coherent-states scheme, which limits the maximal transmission distance to a certain degree. In this paper, we show a reliable solution for this problem by employing non-Gaussian operation, especially, photon subtraction operation, which provides a way to improve the performance of plug-and-play dual-phase-modulated CVQKD protocol. The photon subtraction operation shows experimental feasibility in the plug-andplay configuration since it can be implemented under current technology. Security results indicate that the photon subtraction operation can evidently enhance the maximal transmission distance of the plug-and-play dual-phase-modulated CVQKD protocol, which effectively makes up the drawback of the original one. Furthermore, we achieve the tighter bound of the transmission distance by considering the finite-size effect, which is more practical compared with that achieved in the asymptotic limit.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8(8), 595 (2014)

    ADS  Google Scholar 

  2. 2.

    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)

    ADS  MATH  Google Scholar 

  3. 3.

    V. Scarani, H. Bechmann-Pasquinucci, N. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81(3), 1301 (2009)

    ADS  Google Scholar 

  4. 4.

    C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84(2), 621 (2012)

    ADS  Google Scholar 

  5. 5.

    W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)

    ADS  MATH  Google Scholar 

  6. 6.

    H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science 283(5410), 2050 (1999)

    ADS  Google Scholar 

  7. 7.

    M. Gessner, L. Pezzè, and A. Smerzi, Efficient entanglement criteria for discrete, continuous, and hybrid variables, Phys. Rev. A 94(2), 020101 (2016)

    ADS  Google Scholar 

  8. 8.

    S. Takeda, M. Fuwa, P. van Loock, and A. Furusawa, Entanglement swapping between discrete and continuous variables, Phys. Rev. Lett. 114(10), 100501 (2015)

    ADS  Google Scholar 

  9. 9.

    X. D. Wu, Q. Liao, D. Huang, X. H. Wu, and Y. Guo, Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine, Chin. Phys. B 26(11), 110304 (2017)

    ADS  Google Scholar 

  10. 10.

    D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, Continuous-variable quantum key distribution with 1 Mbps secure key rate, Opt. Express 23(13), 17511 (2015)

    ADS  Google Scholar 

  11. 11.

    D. Huang, P. Huang, D. Lin, and G. Zeng, Long-distance continuous-variable quantum key distribution by controlling excess noise, Sci. Rep. 6(1), 19201 (2016)

    ADS  Google Scholar 

  12. 12.

    S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, High-rate measurement-deviceindependent quantum cryptography, Nat. Photonics 9(6), 397 (2015)

    ADS  Google Scholar 

  13. 13.

    D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, Field demonstration of a continuous-variable quantum key distribution network, Opt. Lett. 41(15), 3511 (2016)

    ADS  Google Scholar 

  14. 14.

    R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, Entanglement-based quantum communication over 144 km, Nat. Phys. 3(7), 481 (2007)

    Google Scholar 

  15. 15.

    C. Erven, C. Couteau, R. Laflamme, and G. Weihs, Entangled quantum key distribution over two free-space optical links, Opt. Express 16(21), 16840 (2008)

    ADS  Google Scholar 

  16. 16.

    Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits, npj Quantum Inform. 3(1), 25 (2017)

    ADS  Google Scholar 

  17. 17.

    J. Fang, P. Huang, and G. Zeng, Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation, Phys. Rev. A 89(2), 022315 (2014)

    ADS  Google Scholar 

  18. 18.

    F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett. 88(5), 057902 (2002)

    ADS  Google Scholar 

  19. 19.

    P. Huang, J. Fang, and G. Zeng, State-discrimination attack on discretely modulated continuous-variable quantum key distribution, Phys. Rev. A 89(4), 042330 (2014)

    ADS  Google Scholar 

  20. 20.

    Y. Guo, Q. Liao, Y. Wang, D. Huang, P. Huang, and G. Zeng, Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction, Phys. Rev. A 95(3), 032304 (2017)

    ADS  Google Scholar 

  21. 21.

    P. Jouguet, S. Kunzjacques, A. Leverrier, P. Grangier, and E. Diamanti, Experimental demonstration of longdistance continuous-variable quantum key distribution, Nat. Photonics 7(5), 378 (2013)

    ADS  Google Scholar 

  22. 22.

    A. Leverrier and P. Grangier, Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation, Phys. Rev. Lett. 102(18), 180504 (2009)

    ADS  Google Scholar 

  23. 23.

    A. Leverrier and P. Grangier, Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation, Phys. Rev. A 83(4), 042312 (2011)

    ADS  Google Scholar 

  24. 24.

    F. Grosshans, Collective attacks and unconditional security in continuous variable quantum key distribution, Phys. Rev. Lett. 94(2), 020504 (2005)

    ADS  Google Scholar 

  25. 25.

    M. Navascués and A. Acín, Security bounds for continuous variables quantum key distribution, Phys. Rev. Lett. 94(2), 020505 (2005)

    ADS  Google Scholar 

  26. 26.

    F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks, Phys. Rev. Lett. 109(10), 100502 (2012)

    ADS  Google Scholar 

  27. 27.

    A. Leverrier, F. Grosshans, and P. Grangier, Finite-size analysis of a continuous-variable quantum key distribution, Phys. Rev. A 81(6), 062343 (2010)

    ADS  Google Scholar 

  28. 28.

    A. Leverrier, Composable security proof for continuousvariable quantum key distribution with coherent states, Phys. Rev. Lett. 114(7), 070501 (2015)

    ADS  Google Scholar 

  29. 29.

    B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A 76(5), 052323 (2007)

    ADS  Google Scholar 

  30. 30.

    X. Q. Dinh, Z. Zhang, and P. L. Voss, A 24 km fiber-based discretely signaled continuous variable quantum key distribution system, Opt. Express 17(26), 24244 (2009)

    ADS  Google Scholar 

  31. 31.

    J. Lodewyck, M. Bloch, R. Garc’ıa-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuiss-chert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, Quantum key distribution over 25 km with an all-fiber continuous-variable system, Phys. Rev. A 76(4), 042305 (2007)

    ADS  Google Scholar 

  32. 32.

    J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack, Phys. Rev. A 87(6), 062329 (2013)

    ADS  Google Scholar 

  33. 33.

    X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantumkey- distribution system with a heterodyne protocol, Phys. Rev. A 87(5), 052309 (2013)

    ADS  Google Scholar 

  34. 34.

    H. Qin, R. Kumar, and R. Alléaume, Saturation attack on continuous-variable quantum key distribution system, Proc. SPIE 8899, Emerging Technologies in Security and Defence, and Quantum Security II, and Unmanned Sensor Systems X, 88990N (2013)

    Google Scholar 

  35. 35.

    X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A 88(2), 022339 (2013)

    ADS  Google Scholar 

  36. 36.

    D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, High-speed continuous-variable quantum key distribution without sending a local oscillator, Opt. Lett. 40(16), 3695 (2015)

    ADS  Google Scholar 

  37. 37.

    B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Generating the local oscillator “locally” in continuousvariable quantum key distribution based on coherent detection, Phys. Rev. X 5(4), 041009 (2015)

    Google Scholar 

  38. 38.

    D. B. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, Self-referenced continuous-variable quantum key distribution protocol, Phys. Rev. X 5(4), 041010 (2015)

    Google Scholar 

  39. 39.

    J. Trapani, B. Teklu, S. Olivares, and M. G. Paris, Quantum phase communication channels in the presence of static and dynamical phase diffusion, Phys. Rev. A 92(1), 012317 (2015)

    ADS  Google Scholar 

  40. 40.

    B. Teklu, J. Trapani, S. Olivares, and M. G. Paris, Noisy quantum phase communication channels, Phys. Scr. 90(7), 074027 (2015)

    ADS  Google Scholar 

  41. 41.

    Y. Y. Jin, S. X. Qin, H. Zu, L. Zhou, W. Zhong, and Y. B. Sheng, Heralded amplification of single-photon entanglement with polarization feature, Front. Phys. 13(5), 130321 (2018)

    Google Scholar 

  42. 42.

    M. Legre, H. Zbinden, and N. Gisin, Implementation of continuous variable quantum cryptography in optical fibres using a go-&-return configuration, Quantum Inf. Comput. 6, 326 (2006)

    MATH  Google Scholar 

  43. 43.

    N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, Trojan-horse attacks on quantum-key-distribution systems, Phys. Rev. A 73(2), 022320 (2006)

    ADS  Google Scholar 

  44. 44.

    N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, Trojan-horse attacks threaten the security of practical quantum cryptography, New J. Phys. 16(12), 123030 (2014)

    ADS  MathSciNet  Google Scholar 

  45. 45.

    D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol, Phys. Rev. A 94(3), 032305 (2016)

    ADS  Google Scholar 

  46. 46.

    P. Huang, G. He, J. Fang, and G. Zeng, Performance improvement of continuous-variable quantum key distribution via photon subtraction, Phys. Rev. A 87(1), 012317 (2013)

    ADS  Google Scholar 

  47. 47.

    C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)

    ADS  Google Scholar 

  48. 48.

    Z. Li, Y. Zhang, X. Wang, B. Xu, X. Peng, and H. Guo, Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution, Phys. Rev. A 93(1), 012310 (2016)

    ADS  Google Scholar 

  49. 49.

    S. Zhang, Y. Dong, X. Zou, B. Shi, and G. Guo, Continuous-variable-entanglement distillation with photon addition, Phys. Rev. A 88(3), 032324 (2013)

    ADS  Google Scholar 

  50. 50.

    X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Han, Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach, Front. Phys. 13(5), 130322 (2018)

    Google Scholar 

  51. 51.

    R. García-Patrón and N. J. Cerf, Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution, Phys. Rev. Lett. 97(19), 190503 (2006)

    ADS  Google Scholar 

  52. 52.

    Y. Shen, X. Peng, J. Yang, and H. Guo, Continuousvariable quantum key distribution with Gaussian source noise, Phys. Rev. A 83(5), 052304 (2011)

    ADS  Google Scholar 

  53. 53.

    K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state, Front. Phys. 13(5), 130320 (2018)

    Google Scholar 

  54. 54.

    M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Single-photon sources and detectors, Rev. Sci. Instrum. 82(7), 071101 (2011)

    ADS  Google Scholar 

  55. 55.

    A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states, Phys. Rev. A 73(4), 042310 (2006)

    ADS  Google Scholar 

  56. 56.

    G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65(3), 032314 (2002)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yi-Jun Wang or Ying Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Y., Zhong, H. et al. Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys. 14, 41501 (2019). https://doi.org/10.1007/s11467-019-0881-8

Download citation

Keywords

  • plug-and-play
  • dual-phase-modulated
  • continuous variable
  • quantum key distribution
  • photon subtraction