One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED

Abstract

We propose a single-step implementation of a muti-target-qubit controlled phase gate with one catstate qubit (cqubit) simultaneously controlling n–1 target cqubits. The two logic states of a cqubit are represented by two orthogonal cat states of a single cavity mode. In this proposal, the gate is implemented with n microwave cavities coupled to a superconducting transmon qutrit. Because the qutrit remains in the ground state during the gate operation, decoherence caused due to the qutrit’s energy relaxation and dephasing is greatly suppressed. The gate implementation is quite simple because only a single-step operation is needed and neither classical pulse nor measurement is required. Numerical simulations demonstrate that high-fidelity realization of a controlled phase gate with one cqubit simultaneously controlling two target cqubits is feasible with present circuit QED technology. This proposal can be extended to a wide range of physical systems to realize the proposed gate, such as multiple microwave or optical cavities coupled to a natural or artificial three-level atom.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A 400(1818), 97 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  2. 2.

    P. W. Shor, in: Proceedings of the 35th Annual Symposium on Foundations of Computer Science IEEE Computer Society Press, Santa Fe, NM, 1994

    Google Scholar 

  3. 3.

    L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)

    ADS  Google Scholar 

  4. 4.

    A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52(5), 3457 (1995)

    ADS  Google Scholar 

  5. 5.

    M. Mötöen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, Quantum circuits for general multiqubit gates, Phys. Rev. Lett. 93(13), 130502 (2004)

    ADS  Google Scholar 

  6. 6.

    Y. Liu, G. L. Long, and Y. Sun, Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates, Int. J. Quant. Inf. 6(03), 447 (2008)

    MATH  Google Scholar 

  7. 7.

    J. K. Pachos and P. L. Knight, Quantum computation with a one-dimensional optical lattice, Phys. Rev. Lett. 91(10), 107902 (2003)

    ADS  Google Scholar 

  8. 8.

    H. Ollivier and P. Milman, Proposal for realization of a Toffoli gate via cavity-assisted collision, arXiv: quantph/0306064 (2003)

    Google Scholar 

  9. 9.

    J. Zhang, W. Liu, Z. Deng, Z. Lu, and G. L. Long, Modularization of multi-qubit controlled phase gate and its NMR implementation, J. Opt. B 7, 22 (2005)

    ADS  Google Scholar 

  10. 10.

    A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, Implementation of a Toffoli gate with superconducting circuits, Nature 481(7380), 170 (2012)

    ADS  Google Scholar 

  11. 11.

    L. M. Duan, B. Wang, and H. J. Kimble, Robust quantum gates on neutral atoms with cavity-assisted photonscattering, Phys. Rev. A 72(3), 032333 (2005)

    ADS  Google Scholar 

  12. 12.

    X. Wang, A. Sørensen, and K. Mølmeret, Multibit gates for quantum computing, Phys. Rev. Lett. 86(17), 3907 (2001)

    ADS  Google Scholar 

  13. 13.

    X. Zou, Y. Dong, and G. C. Guo, Implementing a conditional z gate by a combination of resonant interaction and quantum interference, Phys. Rev. A 74(3), 032325 (2006)

    ADS  Google Scholar 

  14. 14.

    C. P. Yang and S. Han, n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator, Phys. Rev. A 72(3), 032311 (2005)

    ADS  Google Scholar 

  15. 15.

    C. P. Yang and S. Han, Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED, Phys. Rev. A 73(3), 032317 (2006)

    ADS  Google Scholar 

  16. 16.

    W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, One-step implementation of multi-qubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity, Appl. Phys. Lett. 96(24), 241113 (2010)

    ADS  Google Scholar 

  17. 17.

    S. B. Zheng, Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction, Phys. Rev. A 87(4), 042318 (2013)

    ADS  MathSciNet  Google Scholar 

  18. 18.

    T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, Realization of the quantum Toffoli gate with trapped ions, Phys. Rev. Lett. 102(4), 040501 (2009)

    ADS  Google Scholar 

  19. 19.

    H. R. Wei and F. G. Deng, Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities, Phys. Rev. A 87(2), 022305 (2013)

    ADS  Google Scholar 

  20. 20.

    H. W. Wei and F. G. Deng, Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities, Sci. Rep. 4(1), 7551 (2014)

    Google Scholar 

  21. 21.

    M. Hua, M. J. Tao, and F. G. Deng, Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics, Phys. Rev. A 90(1), 012328 (2014)

    ADS  Google Scholar 

  22. 22.

    M. Hua, M. J. Tao, and F. G. Deng, Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED, Sci. Rep. 5(1), 9274 (2015)

    Google Scholar 

  23. 23.

    C. P. Yang, Y. X. Liu, and F. Nori, Phase gate of one qubit simultaneously controlling n qubits in a cavity, Phys. Rev. A 81(6), 062323 (2010)

    ADS  Google Scholar 

  24. 24.

    C. P. Yang, S. B. Zheng, and F. Nori, Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity, Phys. Rev. A 82(6), 062326 (2010)

    ADS  Google Scholar 

  25. 25.

    C. P. Yang, Q. P. Su, F. Y. Zhang, and S. B. Zheng, Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses, Opt. Lett. 39(11), 3312 (2014)

    ADS  Google Scholar 

  26. 26.

    H. F. Wang, A. D. Zhu, and S. Zhang, One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities, Opt. Lett. 39(6), 1489 (2014)

    ADS  Google Scholar 

  27. 27.

    T. Liu, X. Z. Cao, Q. P. Su, S. J. Xiong, and C. P. Yang, Multi-target-qubit unconventional geometric phase gate in a multicavity system, Sci. Rep. 6(1), 21562 (2016)

    ADS  Google Scholar 

  28. 28.

    N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature 536(7617), 441 (2016)

    ADS  Google Scholar 

  29. 29.

    M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically protected cat-qubits: a new paradigm for universal quantum computation, New J. Phys. 16(4), 045014 (2014)

    ADS  Google Scholar 

  30. 30.

    S. E. Nigg, Deterministic hadamard gate for microwave cat-state qubits in circuit QED, Phys. Rev. A 89(2), 022340 (2014)

    ADS  Google Scholar 

  31. 31.

    C. P. Yang, Q. P. Su, S. B. Zheng, F. Nori, and S. Han, Entangling two oscillators with arbitrary asymmetric initial states, Phys. Rev. A 95(5), 052341 (2017)

    ADS  Google Scholar 

  32. 32.

    R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, arXiv: 1608.02430 (2016)

    Google Scholar 

  33. 33.

    C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, A Schrödinger cat living in two boxes, Science 352(6289), 1087 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  34. 34.

    C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantuminformation transfer with superconducting-quantuminterference-device qubits in cavity QED, Phys. Rev. A 67(4), 042311 (2003)

    ADS  Google Scholar 

  35. 35.

    J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68(6), 064509 (2003)

    ADS  Google Scholar 

  36. 36.

    A. Blais, R. S. Huang, A. Wallra, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69(6), 062320 (2004)

    ADS  Google Scholar 

  37. 37.

    J. Q. You and F. Nori, Superconducting circuits and quantum information, Phys. Today 58(11), 42 (2005)

    Google Scholar 

  38. 38.

    J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453(7198), 1031 (2008)

    ADS  Google Scholar 

  39. 39.

    J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)

    ADS  Google Scholar 

  40. 40.

    Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)

    ADS  Google Scholar 

  41. 41.

    X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  42. 42.

    M. AbuGhanem, A. H. Homid, and M. Abdel-Aty, Cavity control as a new quantum algorithms implementation treatment, Front. Phys. 13, 130303 (2018)

    Google Scholar 

  43. 43.

    H. P. Cui, Y. Shan, J. Zou, and B. Shao, Entanglement reciprocation between two charge qubits and cavity field, Front. Phys. China 3, 258 (2008)

    ADS  Google Scholar 

  44. 44.

    P. B. Li, Y. C. Liu, S. Y. Gao, Z. L. Xiang, P. Rabl, Y. F. Xiao, and F. L. Li, Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities, Phys. Rev. Applied 4, 044003 (2015)

    ADS  Google Scholar 

  45. 45.

    P. B. Li, S. Y. Gao, and F. L. Li, Engineering two-mode entangled states between two superconducting resonators by dissipation, Phys. Rev. A 86, 012318 (2012)

    ADS  Google Scholar 

  46. 46.

    M. Šašura and V. Buzek, Multiparticle entanglement with quantum logic networks: Application to cold trapped ions, Phys. Rev. A 64(1), 012305 (2001)

    ADS  Google Scholar 

  47. 47.

    F. Gaitan, Quantum Error Correction and Fault Tolerant Quantum Computing, CRC Press, USA, 2008

    Google Scholar 

  48. 48.

    T. Beth and M. Rötteler, Quantum Information, Springer, Berlin, 2001, Vol. 173, Ch. 4, p. 96

    ADS  Google Scholar 

  49. 49.

    S. L. Braunstein, V. Buzek, and M. Hillery, Quantuminformation distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit, Phys. Rev. A 63(5), 052313 (2001)

    ADS  Google Scholar 

  50. 50.

    J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A 76(4), 042319 (2007)

    ADS  Google Scholar 

  51. 51.

    D. Sank, Z. Chen, M. Khezri, J. Kelly, R. Barends, B. Campbell, Y. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, T. White, J. Wenner, A. N. Korotkov, and J. M. Martinis, Measurement-induced state transitions in a superconducting qubit: beyond the rotating wave approximation, Phys. Rev. Lett. 117(19), 190503 (2016)

    ADS  MathSciNet  Google Scholar 

  52. 52.

    P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B 79(18), 180511 (2009)

    ADS  Google Scholar 

  53. 53.

    R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett. 111(8), 080502 (2013)

    ADS  Google Scholar 

  54. 54.

    M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4(7), 523 (2008)

    Google Scholar 

  55. 55.

    M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)

    ADS  Google Scholar 

  56. 56.

    Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102(16), 163503 (2013)

    ADS  Google Scholar 

  57. 57.

    D. F. James and J. Jerke, Effective hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)

    ADS  Google Scholar 

  58. 58.

    Q. P. Su, H. H. Zhu, L. Yu, Y. Zhang, S. J. Xiong, J. M. Liu, and C. P. Yang, Generating double NOON states of photons in circuit QED, Phys. Rev. A 95(2), 022339 (2017)

    ADS  Google Scholar 

  59. 59.

    C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, One-step transfer or exchange of arbitrary multipartite quantum states with a single-qubit coupler, Phys. Rev. B 92(5), 054509 (2015)

    ADS  Google Scholar 

  60. 60.

    Y. X. Liu, S. K. Özdemir, A. Miranowicz, and N. Imoto, Kraus representation of a damped harmonic oscillator and its application, Phys. Rev. A 70, 042308 (2004)

    ADS  Google Scholar 

  61. 61.

    C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Crosstalkinsensitive method for simultaneously coupling multiple pairs of resonators, Phys. Rev. A 93(4), 042307 (2016)

    ADS  Google Scholar 

  62. 62.

    J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Suppressing charge noise decoherence in superconducting charge qubits, Phys. Rev. B 77, 180502(R) (2008)

    ADS  Google Scholar 

  63. 63.

    T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys. 6(10), 772 (2010)

    Google Scholar 

  64. 64.

    For a transmon qutrit, the |g〉 ↔ |f〉 transition is much weaker than those of the |g〉 ↔ |e〉 and |e〉 ↔ |f〉 transitions. Thus, we have γfg –1 » γeg –1, γfe –1.

  65. 65.

    C. Rigetti, S. Poletto, J. M. Gambetta, B. L. T. Plourde, J. M. Chow, et al., Superconducting qubit in waveguide cavity with coherence time approaching 0.1 ms, Phys. Rev. B 86, 100506(R) (2012)

    ADS  Google Scholar 

  66. 66.

    M. J. Peterer, S. J. Bader, X. Jin, F. Yan, A. Kamal, T. J. Gudmundsen, P. J. Leek, T. P. Orlando, W. D. Oliver, and S. Gustavsson, Coherence and decay of higher energy levels of a superconducting transmon qubit, Phys. Rev. Lett. 114, 010501 (2015)

    ADS  Google Scholar 

  67. 67.

    A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, Implementation of a Toffoli gate with superconducting circuits, Nature 481, 170 (2011)

    ADS  Google Scholar 

  68. 68.

    M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, A quantum memory with near-millisecond coherence in circuit QED, Phys. Rev. B 94(1), 014506 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NKRDP of China (Grant No. 2016YFA0301802) and the National Natural Science Foundation of China under Grant Nos. 11074062, 11374083, and 11774076. This work was also supported by the Hangzhou-City grant for Quantum Information and Quantum Optics Innovation Research Team.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chui-Ping Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Zheng, Z., Zhang, Y. et al. One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED. Front. Phys. 14, 21602 (2019). https://doi.org/10.1007/s11467-018-0875-y

Download citation

Keywords

  • circuit QED
  • cat-state
  • multi-target-qubit controlled phase gate