Frontiers of Physics

, 13:137803 | Cite as

Wideband high-efficient linear polarization rotators

  • Zheng-Yong Song
  • Qiong-Qiong Chu
  • Xiao-Peng Shen
  • Qing Huo Liu
Research article


We demonstrate a wideband polarization rotator with characteristics of high efficiency and large-range incidence angle by using a very simple anisotropic reflective metasurface. The calculated results show that reflection coefficient of cross polarization is larger than 71% over an octave frequency bandwidth from ~4.9 GHz to ~10.4 GHz. The proposed metasurface can still work very well even at incidence angle of 60°. The experiment at microwave frequencies is carried out and its results agree well with the simulated ones.


polarization metasurface 

PACS numbers

78.67.Pt 78.20.-e 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11504305 and 61372048).


  1. 1.
    M. Born and E. Wolf, Principles of Optics, Cambridge: Cambridge University Press, 1999CrossRefGoogle Scholar
  2. 2.
    J. A. Kong, Electromagnetic Wave Theory, Cambridge: EMW Publishing, 2005Google Scholar
  3. 3.
    C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures, Phys. Rev. B 85(19), 195131 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, Metamaterials for enhanced polarization conversion in plasmonic excitation, ACS Nano 5(6), 5100 (2011)CrossRefGoogle Scholar
  5. 5.
    R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Opt. Mater. Express 7(3), 977 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Y. Guo, M. H. Li, X. J. Huang, and H. L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion, Appl. Phys. Lett. 105(3), 033507 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, A helical metamaterial for broadband circular polarization conversion, Adv. Opt. Mater. 3(10), 1411 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Cheng, R. Gong, and L. Wu, Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves, Plasmonics 12(4), 1113 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, D. Feng, Z. Xu, and S. Qu, Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes, Sci. Rep. 6(1), 34518 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling, Phys. Rev. Lett. 108(21), 213905 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334(6054), 333 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, Nanostructured holograms for broadband manipulation of vector beams, Nano Lett. 13(9), 4269 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, A broadband, background-free quarterwave plate based on plasmonic metasurfaces, Nano Lett. 12(12), 6328 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys. Rev. Lett. 99(6), 063908 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Y. Song, L. Zhang, and Q. H. Liu, High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic meta-surfaces, Plasmonics 11(1), 61 (2016)CrossRefGoogle Scholar
  16. 16.
    N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science 340(6138), 1304 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Y. Song, X. Li, J. M. Hao, S. Y. Xiao, M. Qiu, Q. He, S. J. Ma, and L. Zhou, Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping, Opt. Express 21(15), 18178 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Dielectric metareflectarray for broadband linear polarization conversion and optical vortex generation, Nano Lett. 14(3), 1394 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Y. Song, and B. L. Zhang, Wide-angle polarizationinsensitive transparency of a continuous opaque metal film for near-infrared light, Opt. Express 22(6), 6519 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Y. Song, J. Zhu, C. Zhu, Z. Yu, and Q. H. Liu, Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric metareflect arrays, Mater. Lett. 159, 269 (2015)CrossRefGoogle Scholar
  21. 21.
    S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11(5), 426 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, Versatile polarization generation with an aluminum plasmonic metasurface, Nano Lett. 17(1), 445 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and A. Q. Liu, Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface, Adv. Opt. Mater. 5(7), 1600938 (2017)CrossRefGoogle Scholar
  24. 24.
    P. C. Wu, J. W. Chen, C. W. Yin, Y. C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K. W. Lee, C. J. Chuang, C. M. Wang, and D. P. Tsai, Visible metasurfaces for on-chip polarimetry, ACS Photonics, (2017) (published soon)Google Scholar
  25. 25.
    P. C. Wu, N. Papasimakis, and D. P. Tsai, Self-affine graphene metasurfaces for tunable broadband absorption, Phys. Rev. Appl. 6(4), 044019 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    L. Cong, P. Pitchappa, C. Lee, and R. Singh, Active phase transition via loss engineering in a terahertz MEMS metamaterial, Adv. Mater. 29(26), 1700733 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, Active multifunctional microelectromechanical system metadevices: Applications in polarization control, wavefront deflection, and holograms, Adv. Opt. Mater. 5(2), 1600716 (2017)CrossRefGoogle Scholar
  28. 28.
    L. Cong, Y. K. Srivastava, and R. Singh, Near-field inductive coupling induced polarization control in metasurfaces, Adv. Opt. Mater. 4(6), 848 (2016)CrossRefGoogle Scholar
  29. 29.
    L. Cong, Y. K. Srivastava, and R. Singh, Inter and intrametamolecular interaction enabled broadband highefficiency polarization control in metasurfaces, Appl. Phys. Lett. 108(1), 011110 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control, Adv. Mater. 27(42), 6630 (2015)CrossRefGoogle Scholar
  31. 31.
    L. Cong, N. Xu, W. Zhang, and R. Singh, Polarization control in terahertz metasurfaces with the lowest order rotational symmetry, Adv. Opt. Mater. 3(9), 1176 (2015)CrossRefGoogle Scholar
  32. 32.
    L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, A perfect metamaterial polarization rotator, Appl. Phys. Lett. 103(17), 171107 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, Metamaterial polarization converter analysis: Limits of performance, Appl. Phys. B 112(2), 143 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    R. Malureanu, W. Sun, M. Zalkovskij, Q. He, L. Zhou, P. Uhd Jepsen, and A. Lavrinenko, Metamaterial-based design for a half-wavelength plate in the terahertz range, Appl. Phys. A Mater. Sci. Process. 119(2), 467 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Electromagnetics and Acoustics, Department of Electronic ScienceXiamen UniversityXiamenChina
  2. 2.School of Physical Science and TechnologyChina University of Mining and TechnologyXuzhouChina
  3. 3.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA

Personalised recommendations