Skip to main content
Log in

Wideband high-efficient linear polarization rotators

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We demonstrate a wideband polarization rotator with characteristics of high efficiency and large-range incidence angle by using a very simple anisotropic reflective metasurface. The calculated results show that reflection coefficient of cross polarization is larger than 71% over an octave frequency bandwidth from ~4.9 GHz to ~10.4 GHz. The proposed metasurface can still work very well even at incidence angle of 60°. The experiment at microwave frequencies is carried out and its results agree well with the simulated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and E. Wolf, Principles of Optics, Cambridge: Cambridge University Press, 1999

    Book  Google Scholar 

  2. J. A. Kong, Electromagnetic Wave Theory, Cambridge: EMW Publishing, 2005

    Google Scholar 

  3. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures, Phys. Rev. B 85(19), 195131 (2012)

    Article  ADS  Google Scholar 

  4. L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, Metamaterials for enhanced polarization conversion in plasmonic excitation, ACS Nano 5(6), 5100 (2011)

    Article  Google Scholar 

  5. R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Opt. Mater. Express 7(3), 977 (2017)

    Article  Google Scholar 

  6. L. Y. Guo, M. H. Li, X. J. Huang, and H. L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion, Appl. Phys. Lett. 105(3), 033507 (2014)

    Article  ADS  Google Scholar 

  7. J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, A helical metamaterial for broadband circular polarization conversion, Adv. Opt. Mater. 3(10), 1411 (2015)

    Article  Google Scholar 

  8. Y. Cheng, R. Gong, and L. Wu, Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves, Plasmonics 12(4), 1113 (2017)

    Article  Google Scholar 

  9. Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, D. Feng, Z. Xu, and S. Qu, Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes, Sci. Rep. 6(1), 34518 (2016)

    Article  ADS  Google Scholar 

  10. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling, Phys. Rev. Lett. 108(21), 213905 (2012)

    Article  ADS  Google Scholar 

  11. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334(6054), 333 (2011)

    Article  ADS  Google Scholar 

  12. J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, Nanostructured holograms for broadband manipulation of vector beams, Nano Lett. 13(9), 4269 (2013)

    Article  ADS  Google Scholar 

  13. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, A broadband, background-free quarterwave plate based on plasmonic metasurfaces, Nano Lett. 12(12), 6328 (2012)

    Article  ADS  Google Scholar 

  14. J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys. Rev. Lett. 99(6), 063908 (2007)

    Article  ADS  Google Scholar 

  15. Z. Y. Song, L. Zhang, and Q. H. Liu, High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic meta-surfaces, Plasmonics 11(1), 61 (2016)

    Article  Google Scholar 

  16. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science 340(6138), 1304 (2013)

    Article  ADS  Google Scholar 

  17. Z. Y. Song, X. Li, J. M. Hao, S. Y. Xiao, M. Qiu, Q. He, S. J. Ma, and L. Zhou, Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping, Opt. Express 21(15), 18178 (2013)

    Article  ADS  Google Scholar 

  18. Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Dielectric metareflectarray for broadband linear polarization conversion and optical vortex generation, Nano Lett. 14(3), 1394 (2014)

    Article  ADS  Google Scholar 

  19. Z. Y. Song, and B. L. Zhang, Wide-angle polarizationinsensitive transparency of a continuous opaque metal film for near-infrared light, Opt. Express 22(6), 6519 (2014)

    Article  ADS  Google Scholar 

  20. Z. Y. Song, J. Zhu, C. Zhu, Z. Yu, and Q. H. Liu, Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric metareflect arrays, Mater. Lett. 159, 269 (2015)

    Article  Google Scholar 

  21. S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11(5), 426 (2012)

    Article  ADS  Google Scholar 

  22. P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, Versatile polarization generation with an aluminum plasmonic metasurface, Nano Lett. 17(1), 445 (2017)

    Article  ADS  Google Scholar 

  23. P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and A. Q. Liu, Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface, Adv. Opt. Mater. 5(7), 1600938 (2017)

    Article  Google Scholar 

  24. P. C. Wu, J. W. Chen, C. W. Yin, Y. C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K. W. Lee, C. J. Chuang, C. M. Wang, and D. P. Tsai, Visible metasurfaces for on-chip polarimetry, ACS Photonics, (2017) (published soon)

    Google Scholar 

  25. P. C. Wu, N. Papasimakis, and D. P. Tsai, Self-affine graphene metasurfaces for tunable broadband absorption, Phys. Rev. Appl. 6(4), 044019 (2016)

    Article  ADS  Google Scholar 

  26. L. Cong, P. Pitchappa, C. Lee, and R. Singh, Active phase transition via loss engineering in a terahertz MEMS metamaterial, Adv. Mater. 29(26), 1700733 (2017)

    Article  Google Scholar 

  27. L. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, Active multifunctional microelectromechanical system metadevices: Applications in polarization control, wavefront deflection, and holograms, Adv. Opt. Mater. 5(2), 1600716 (2017)

    Article  Google Scholar 

  28. L. Cong, Y. K. Srivastava, and R. Singh, Near-field inductive coupling induced polarization control in metasurfaces, Adv. Opt. Mater. 4(6), 848 (2016)

    Article  Google Scholar 

  29. L. Cong, Y. K. Srivastava, and R. Singh, Inter and intrametamolecular interaction enabled broadband highefficiency polarization control in metasurfaces, Appl. Phys. Lett. 108(1), 011110 (2016)

    Article  ADS  Google Scholar 

  30. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control, Adv. Mater. 27(42), 6630 (2015)

    Article  Google Scholar 

  31. L. Cong, N. Xu, W. Zhang, and R. Singh, Polarization control in terahertz metasurfaces with the lowest order rotational symmetry, Adv. Opt. Mater. 3(9), 1176 (2015)

    Article  Google Scholar 

  32. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, A perfect metamaterial polarization rotator, Appl. Phys. Lett. 103(17), 171107 (2013)

    Article  ADS  Google Scholar 

  33. D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, Metamaterial polarization converter analysis: Limits of performance, Appl. Phys. B 112(2), 143 (2013)

    Article  ADS  Google Scholar 

  34. R. Malureanu, W. Sun, M. Zalkovskij, Q. He, L. Zhou, P. Uhd Jepsen, and A. Lavrinenko, Metamaterial-based design for a half-wavelength plate in the terahertz range, Appl. Phys. A Mater. Sci. Process. 119(2), 467 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11504305 and 61372048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Yong Song or Xiao-Peng Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, ZY., Chu, QQ., Shen, XP. et al. Wideband high-efficient linear polarization rotators. Front. Phys. 13, 137803 (2018). https://doi.org/10.1007/s11467-018-0779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0779-x

Keywords

PACS numbers

Navigation