Advertisement

Frontiers of Physics

, 13:136802 | Cite as

Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy

  • Fang Yang
  • Yan Liang
  • Li-Xia Liu
  • Qing Zhu
  • Wei-Hua Wang
  • Xue-Tao Zhu
  • Jian-Dong Guo
Review article
  • 68 Downloads

Abstract

At heterointerfaces between complex oxides with polar discontinuity, the instability-induced electric field may drive electron redistribution, causing a dramatic change in the interfacial charge density. This results in the emergence of a rich diversity of exotic physical phenomena in these quasi-two-dimensional systems, which can be further tuned by an external field. To develop novel multifunctional electronic devices, it is essential to control the growth of polar oxide films and heterointerfaces with atomic precision. In this article, we review recent progress in control techniques for oxide film growth by molecular beam epitaxy (MBE). We emphasize the importance of tuning the microscopic surface structures of polar films for developing precise growth control techniques. Taking the polar SrTiO3 (110) and (111) surfaces as examples, we show that, by keeping the surface reconstructed throughout MBE growth, high-quality layer-by-layer homoepitaxy can be realized. Because the stability of different reconstructions is determined by the surface cation concentration, the growth rate from the Sr/Ti evaporation source can be monitored in real time. A precise, automated control method is established by which insulating homoepitaxial SrTiO3 (110) and (111) films can be obtained on doped metallic substrates. The films show atomically well-defined surfaces and high dielectric performance, which allows the surface carrier concentration to be tuned in the range of ~1013/cm2. By applying the knowledge of microstructures from fundamental surface physics to film growth techniques, new opportunities are provided for material science and related research.

Keywords

complex oxide films molecular beam epitaxy surface reconstruction heterointerfaces 

PACS numbers

68.47.Gh 68.35.B- 77.55.Px 68.55.-a 81.15.-z 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11474334, 11634016, and 11404381), the National Key R&D Program of the Ministry of Science and Technology of China (Grant Nos. 2017YFA0303600 and 2014CB921001), the Open Research Fund Program of the State Key Laboratory of Low- Dimensional Quantum Physics, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030100).

References

  1. 1.
    A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Artificial charge-modulation in atomic-scale perovskite titanate superlattices, Nature 419(6905), 378 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004); corrigendum: Nature 441(7089), 120 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    A. Gozar, G. Logvenov, L. F. Kourkoutis, A. T. Bollinger, L. A. Giannuzzi, D. A. Muller, and I. Bozovic, High-temperature interface superconductivity between metallic and insulating copper oxides, Nature 455(7214), 782 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Y. W. Xie, C. Bell, Y. Hikita, and H. Y. Hwang, Tuning the electron gas at an oxide heterointerface via free surface charges, Adv. Mater. 23(15), 1744 (2011)CrossRefGoogle Scholar
  6. 6.
    A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.M. Triscone, Electric field control of the LaAlO3/SrTiO3 interface ground state, Nature 456(7222), 624 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nanoscale control of an interfacial metal-insulator transition at room temperature, Nat. Mater. 7(4), 298 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Ferroelectric field effect transistor based on epitaxial perovskite heterostructures, Science 276(5310), 238 (1997)CrossRefGoogle Scholar
  9. 9.
    W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, and M. R. Beasley, Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping, Phys. Rev. Lett. 98(19), 196802 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    D. G. Schlom and L. N. Pfeiffer, Oxide electronics: Upward mobility rocks! Nat. Mater. 9(11), 881 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Q. Liu, C. J. Li, W. M. Lü, X. H. Huang, Z. Huang, S. W. Zeng, X. P. Qiu, L. S. Huang, A. Annadi, J. S. Chen, J. M. D. Coey, T. Venkatesan, and Ariando, Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: The role of oxygen vacancies and electronic reconstruction, Phys. Rev. X 3(2), 021010 (2013)Google Scholar
  12. 12.
    J. H. Haeni, C. D. Theis, and D. G. Schlom, RHEED intensity oscillations for the stoichiometric growth of Sr-TiO3 thin films by reactive molecular beam epitaxy, J. Electroceram. 4(2–3), 385 (2000)CrossRefGoogle Scholar
  13. 13.
    A. Tselev, P. Ganesh, L. Qiao, W. Siemons, Z. Gai, M. D. Biegalski, A. P. Baddorf, and S. V. Kalinin, Oxygen control of atomic structure and physical properties of SrRuO3 surfaces, ACS Nano 7(5), 4403 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Y. Jang, S. J. Moon, B. C. Jeon, and J. S. Chung, PLD growth of epitaxially-stabilized 5d perovskite SrIrO3 thin films, J. Korean Phys. Soc. 56(6), 1814 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. S. Kim, N. Bansal, C. Chaparro, H. Gross, and S. Oh, Sr flux stability against oxidation in oxide-molecularbeam- epitaxy environment: Flux, geometry, and pressure dependence, J. Vac. Sci. Technol. A 28(2), 271 (2010)CrossRefGoogle Scholar
  16. 16.
    H. M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. Gea, P. J. Marrero, and D. P. Norton, The growth and properties of epitaxial KNbO3 thin films and KNbO3/KTaO3 superlattices, Appl. Phys. Lett. 68(11), 1488 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    H. J. Bae, J. Sigman, S. J. Park, Y. H. Heo, L. A. Boatner, and D. P. Norton, Growth of semiconducting KTaO3 thin films, Solid-State Electron. 48(1), 51 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Z. L. Liao, F. M. Li, P. Gao, L. Li, J. D. Guo, X. Q. Pan, R. Jin, E. W. Plummer, and J. D. Zhang, Origin of the metal-insulator transition in ultrathin films of La2/3Sr2/3MnO3, Phys. Rev. B 92(12), 125123 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Z. P. Li, M. Bosman, Z. Yang, P. Ren, L. Wang, L. Cao, X. Yu, C. Ke, M. B. H. Breese, A. Rusydi, W. Zhu, Z. Dong, and Y. L. Foo, Interface and surface cation stoichiometry modified by oxygen vacancies in epitaxial manganite films, Adv. Funct. Mater. 22(20), 4312 (2012)CrossRefGoogle Scholar
  20. 20.
    W. S. Choi, C. M. Rouleau, S. S. A. Seo, Z. Luo, H. Zhou, T. T. Fister, J. A. Eastman, P. H. Fuoss, D. D. Fong, J. Z. Tischler, G. Eres, M. F. Chisholm, and H. N. Lee, Atomic layer engineering of perovskite oxides for chemically sharp heterointerfaces, Adv. Mater. 24(48), 6423 (2012)CrossRefGoogle Scholar
  21. 21.
    B. Stanka, W. Hebenstreit, U. Diebold, and S. A. Chambers, Surface reconstruction of Fe3O4(001), Surf. Sci. 448(1), 49 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    P. K. Nayak, M. N. Hedhili, D. K. Cha, and H. N. Alshareef, High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment, Appl. Phys. Lett. 100(20), 202106 (2012); errutum: Appl. phys. Lett. 105(24), 249902 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    C. K. Tan, G. K. L. Goh, and W. L. Cheah, Dielectric properties of hydrothermally epitaxied I–V perovskite thin films, Thin Solid Films 515(16), 6577 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    T. S. Herng, S. P. Lau, S. F. Yu, H. Y. Yang, K. S. Teng, and J. S. Chen, Enhancement of ferromagnetism and stability in Cu-doped ZnO by N2O annealing, J. Phys.: Condens. Matter 19(35), 356214 (2007)Google Scholar
  25. 25.
    D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature 430(7000), 657 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    L. D. Yao, S. Inkinen, and S. van Dijken, Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3, Nat. Commun. 8, 14544 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    F. Lichtenberg, D. Widmer, J. G. Bednorz, T. Williams, and A. Reller, Phase-diagram of latiox - from 2d layered ferroelectric insulator to 3d weak ferromagnetic semiconductor, Z. Phys. B - Condensed Matter 82(2), 211 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    M. Choi, F. Oba, and I. Tanaka, Role of Ti antisitelike defects in SrTiO3, Phys. Rev. Lett. 103(18), 185502 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    F. Yang, Q. Zhang, Z. Yang, J. Gu, Y. Liang, W. Li, W. Wang, K. Jin, L. Gu, and J. Guo, Room-temperature ferroelectricity of SrTiO3 films modulated by cation concentration, Appl. Phys. Lett. 107(8), 082904 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    E. Breckenfeld, N. Bronn, J. Karthik, A. R. Damodaran, S. Lee, N. Mason, and L. W. Martin, Effect of growth induced (non) stoichiometry on interfacial conductance in LaAlO3/SrTiO3, Phys. Rev. Lett. 110(19), 196804 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    H. Yamada, M. Kawasaki, T. Lottermoser, T. Arima, and Y. Tokura, LaMnO3/SrMnO3 interfaces with coupled charge-spin-orbital modulation, Appl. Phys. Lett. 89(5), 052506 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    N. Nakagawa, H. Y. Hwang, and D. A. Muller, Why some interfaces cannot be sharp, Nat. Mater. 5(3), 204 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    J. Chakhalian, J. W. Freeland, A. J. Millis, C. Panagopoulos, and J. M. Rondinelli, Emergent properties in plane view: Strong correlations at oxide interfaces, Rev. Mod. Phys. 86(4), 1189 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    S. Okamoto and A. J. Millis, Electronic reconstruction at an interface between a Mott insulator and a band insulator, Nature 428(6983), 630 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    J. Chakhalian, J. W. Freeland, H. U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer, Orbital reconstruction and covalent bonding at an oxide interface, Science 318(5853), 1114 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Q. Y. Wang, Z. Li, W.H. Zhang, Z.C. Zhang, J.S. Zhang, W. Li, H. Ding, Y.B. Ou, P. Deng, K. Chang, J. Wen, C.L. Song, K. He, J.F. Jia, S.H. Ji, Y.Y. Wang, L.L. Wang, X. Chen, X.C. Ma, and Q.K. Xue, Interfaceinduced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett. 29(3), 037402 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li, L. F. Kourkoutis, J. A. Klug, H. Li, P. Ryan, L.P. Wang, M. Bedzyk, D. A. Muller, L.Q. Chen, J. Levy, and D. G. Schlom, A ferroelectric oxide made directly on silicon, Science 324(5925), 367 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Z. M. Wang, J. G. Feng, Y. Yang, Y. Yao, L. Gu, F. Yang, Q. L. Guo, and J. D. Guo, Cation stoichiometry optimization of SrTiO3 (110) thin films with atomic precision in homogeneous molecular beam epitaxy, Appl. Phys. Lett. 100(5), 051602 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J. G. Feng, F. Yang, Z. M. Wang, Y. Yang, L. Gu, J. D. Zhang, and J. D. Guo, Growth of SrTiO3 (110) film by oxide molecular beam epitaxy with feedback control, AIP Adv. 2(4), 041407 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    S. Phark, Y. J. Chang, and T. Won Noh, Selective growth of perovskite oxides on SrTiO3 (001) by control of surface reconstructions, Appl. Phys. Lett. 98(16), 161908 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Y. J. Chang and S. H. Phark, Atomic-scale visualization of initial growth of perovskites on SrTiO3(001) using scanning tunneling microscope, Curr. Appl. Phys. 17(5), 640 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    R. A. Betts and C. W. Pitt, Growth of thin-film lithium-niobate by molecular-beam epitaxy, Electron. Lett. 21(21), 960 (1985)CrossRefGoogle Scholar
  43. 43.
    M. Petrucci, C. W. Pitt, and P. J. Dobson, RHEED studies on Z-cut LiNbO3, Electron. Lett. 22(18), 954 (1986)CrossRefGoogle Scholar
  44. 44.
    J. R. Jr Arthur, Interaction of Ga and As2 molecular beams with GaAs surfaces, J. Appl. Phys. 39(8), 4032 (1968)ADSCrossRefGoogle Scholar
  45. 45.
    D. G. Schlom and J. S. Harris, MBE Growth of High Tc Superconductors, in: Molecular Beam Epitaxy: Applications to Key Materials, Ed. RFC Farrow, Park Ridge, 1995, p. 505CrossRefGoogle Scholar
  46. 46.
    Y. S. Kim, N. Bansal, and S. Oh, Crucible aperture: An effective way to reduce source oxidation in oxide molecular beam epitaxy process, J. Vac. Sci. Technol. A 28(4), 600 (2010)CrossRefGoogle Scholar
  47. 47.
    Y. S. Kim, N. Bansal, and S. Oh, Simple self-gettering differential-pump for minimizing source oxidation in oxide-MBE environment, J. Vac. Sci. Technol. A 29(4), 041505 (2011)CrossRefGoogle Scholar
  48. 48.
    H. T. Zhang, L. R. Dedon, L. W. Martin, and R. Engel-Herbert, Self-regulated growth of LaVO3 thin films by hybrid molecular beam epitaxy, Appl. Phys. Lett. 106(23), 233102 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    B. Jalan, R. Engel-Herbert, N. J. Wright, and S. Stemmer, Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach, J. Vac. Sci. Technol. A 27(3), 461 (2009)CrossRefGoogle Scholar
  50. 50.
    P. Fisher, H. Du, M. Skowronski, P. A. Salvador, O. Maksimov, and X. Weng, Stoichiometric, nonstoichiometric, and locally nonstoichiometric SrTiO3 films grown by molecular beam epitaxy, J. Appl. Phys. 103(1), 013519 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Eisenbeiser, D. Marshall, K. Moore, J. Kulik, and P. Fejes, Advances in heteroepitaxy of oxides on silicon, Thin Solid Films 462–463, 51 (2004)CrossRefGoogle Scholar
  52. 52.
    C. P. I. Ichimiya Ayahiko, Reflection High Energy Election Diffraction, Cambridge: Cambridge University Press, 2004CrossRefGoogle Scholar
  53. 53.
    P. Moetakef, D. G. Ouellette, J. Y. Zhang, T. A. Cain, S. J. Allen, and S. Stemmer, Growth and properties of GdTiO3 films prepared by hybrid molecular beam epitaxy, J. Cryst. Growth 355(1), 166 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    Y. Liang, W. T. Li, S. Y. Zhang, C. J. Lin, C. Li, Y. Yao, Y. Q. Li, H. Yang, and J. D. Guo, Homoepitaxial SrTiO3(111) film with high dielectric performance and atomically well-defined surface, Sci. Rep. 5(1), 10634 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. S. Hellberg, J. Mannhart, and D. G. Schlom, LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces, Nat. Commun. 4, 2351 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    J. Goniakowski, F. Finocchi, and C. Noguera, Polarity of oxide surfaces and nanostructures, Rep. Prog. Phys. 71(1), 016501 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    J. A. Enterkin, A. K. Subramanian, B. C. Russell, M. R. Castell, K. R. Poeppelmeier, and L. D. Marks, A homologous series of structures on the surface of SrTiO3 (110), Nat. Mater. 9(3), 245 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    R. Bachelet, F. Valle, I. C. Infante, F. Sanchez, and J. Fontcuberta, Step formation, faceting, and bunching in atomically flat SrTiO3 (110) surfaces, Appl. Phys. Lett. 91(25), 251904 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    J. Brunen and J. Zegenhagen, Investigation of the Sr-TiO3 (110) surface by means of LEED, scanning tunneling microscopy and Auger spectroscopy, Surf. Sci. 389(1–3), 349 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    H. Bando, Y. Aiura, Y. Haruyama, T. Shimizu, and Y. Nishihara, Structure and electronic states on reduced SrTiO3 (110) surface observed by scanning-tunnelingmicroscopy and spectroscopy, J. Vac. Sci. Technol. B 13(3), 1150 (1995)CrossRefGoogle Scholar
  61. 61.
    B. C. Russell and M. R. Castell, Reconstructions on the polar SrTiO3 (110) surface: Analysis using STM, LEED, and AES, Phys. Rev. B 77(24), 245414 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    Z. M. Wang, K. H. Wu, Q. L. Guo, and J. D. Guo, Tuning the termination of the SrTiO3 (110) surface by Ar+ sputtering, Appl. Phys. Lett. 95(2), 021912 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    F. M. Li, Z. M. Wang, S. Meng, Y. B. Sun, J. L. Yang, Q. L. Guo, and J. D. Guo, Reversible transition between thermodynamically stable phases with low density of oxygen vacancies on the SrTiO3 (110) surface, Phys. Rev. Lett. 107(3), 036103 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    Z. M. Wang, F. Yang, Z. Q. Zhang, Y. Y. Tang, J. G. Feng, K. H. Wu, Q. L. Guo, and J. D. Guo, Evolution of the surface structures on SrTiO3 (110) tuned by Ti or Sr concentration, Phys. Rev. B 83(15), 155453 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Y. Haruyama, Y. Aiura, H. Bando, Y. Nishihara, and H. Kato, Annealing temperature dependence on the electronic structure of the reduced SrTiO3 (111) surface, J. Electron Spectroscopy and Related Phenomena 88–91, 695 (1998)CrossRefGoogle Scholar
  66. 66.
    S. Sekiguchi, M. Fujimoto, M. G. Kang, S. Koizumi, S. B. Cho, and J. Tanaka, Structure analysis of SrTiO3 (111) polar surfaces, Jpn. J. Appl. Phys. 37(7), 4140 (1998)ADSCrossRefGoogle Scholar
  67. 67.
    S. Sekiguchi, M. Fujimoto, M. Nomura, S. B. Cho, J. Tanaka, T. Nishihara, M. G. Kang, and H. H. Park, Atomic force microscopic observation of SrTiO3 polar surface, Solid State Ion. 108(1–4), 73 (1998)CrossRefGoogle Scholar
  68. 68.
    H. Tanaka and T. Kawai, Surface structure of reduced SrTiO3 (111) observed by scanning tunneling microscopy, Surf. Sci. 365(2), 437 (1996)ADSCrossRefGoogle Scholar
  69. 69.
    B. C. Russell and M. R. Castell, (√13×√13)R13:9° and (√7×√7)R19:1° reconstructions of the polar SrTiO3 (111) surface, Phys. Rev. B 75(15), 155433 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    B. C. Russell and M. R. Castell, Surface of sputtered and annealed polar SrTiO3 (111): TiOx-rich (n × n) reconstructions, J. Phys. Chem. C 112(16), 6538 (2008)CrossRefGoogle Scholar
  71. 71.
    J. G. Feng, X. T. Zhu, and J. D. Guo, Reconstructions on SrTiO3 (111) surface tuned by Ti/Sr deposition, Surf. Sci. 614, 38 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    Z. M. Wang, F. M. Li, S. Meng, J. D. Zhang, E. W. Plummer, U. Diebold, and J. D. Guo, Strain-induced defect superstructure on the SrTiO3 (110) surface, Phys. Rev. Lett. 111(5), 056101 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    K. Shimoyama, K. Kubo, T. Maeda, and K. Yamabe, Epitaxial growth of BaTiO3 thin film on SrTiO3 substrate in ultra-high vacuum without introducing oxidant, Jpn. J. Appl. Phys. 40(5a), L463 (2001)ADSCrossRefGoogle Scholar
  74. 74.
    K. Shimoyama, M. Kiyohara, A. Uedono, and K. Yamabe, Homoepitaxial growth of SrTiO3 in an ultrahigh vacuum with automatic feeding of oxygen from the substrate at temperatures as low as 370°C, Jpn. J. Appl. Phys. 41(3a), L269 (2002)ADSCrossRefGoogle Scholar
  75. 75.
    K. Shimoyama, M. Kiyohara, K. Kubo, A. Uedono, and K. Yamabe, Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with automatic feeding of oxygen from the substrate, J. Appl. Phys. 92(8), 4625 (2002)ADSCrossRefGoogle Scholar
  76. 76.
    R. A. De Souza, V. Metlenko, D. Park, and T. E. Weirich, Behavior of oxygen vacancies in single-crystal SrTiO3: Equilibrium distribution and diffusion kinetics, Phys. Rev. B 85(17), 174109 (2012)ADSCrossRefGoogle Scholar
  77. 77.
    F. M. Li, F. Yang, Y. Liang, S. Li, Z. Yang, Q. Zhang, W. Li, X. Zhu, L. Gu, J. Zhang, E. W. Plummer, and J. Guo, δ-doping of oxygen vacancies dictated by thermodynamics in epitaxial SrTiO3 films, AIP Adv. 7(6), 065001 (2017)ADSCrossRefGoogle Scholar
  78. 78.
    L. D. Marks, A. N. Chiaramonti, S. U. Rahman, and M. R. Castell, Transition from order to configurational disorder for surface reconstructions on SrTiO3 (111), Phys. Rev. Lett. 114(22), 226101 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    H. Z. Cheng and A. Selloni, Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile, Phys. Rev. B 79(9), 092101 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    J. Shin, A. Y. Borisevich, V. Meunier, J. Zhou, E. W. Plummer, S. V. Kalinin, and A. P. Baddorf, Oxygen- Induced Surface Reconstruction of SrRuO3 and Its Effect on the BaTiO3 Interface, ACS Nano 4(7), 4190 (2010)CrossRefGoogle Scholar
  81. 81.
    L. M. Peng, Electron atomic scattering factors and scattering potentials of crystals, Micron 30(6), 625 (1999)CrossRefGoogle Scholar
  82. 82.
    B. Kubota, Decomposition of higher oxides of chromium under various pressures of oxygen, J. Am. Ceram. Soc. 44(5), 239 (1961)CrossRefGoogle Scholar
  83. 83.
    R. N. Song, M. H. Hu, X. R. Chen, and J. D. Guo, Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3 (111), Front. Phys. 10(3), 321 (2015)CrossRefGoogle Scholar
  84. 84.
    M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, and D. H. A. Blank, Structure-property relation of SrTiO3/LaAlO3 interfaces, Adv. Mater. 21(17), 1665 (2009)CrossRefGoogle Scholar
  85. 85.
    R. Tromp, G. W. Rubloff, P. Balk, F. K. Legoues, and E. J. Vanloenen, High-temperature SiO2 decomposition at the SiO2/Si interface, Phys. Rev. Lett. 55(21), 2332 (1985)ADSCrossRefGoogle Scholar
  86. 86.
    Y. W. Xie and H. Y. Hwang, Tuning the electrons at the LaAlO3/SrTiO3 interface: From growth to beyond growth, Chin. Phys. B 22(12), 127301 (2013)CrossRefGoogle Scholar
  87. 87.
    W. T. Li, Y. Liang, W. H. Wang, F. Yang, and J. D. Guo, Precise control of LaTiO3 (110) film growth by molecular beam epitaxy and surface termination of the polar film, Acta Physica Sinica 64(7), 078103 (2015)Google Scholar
  88. 88.
    I. C. Infante, J. O. Osso, F. Sanchez, and J. Fontcuberta, Tuning in-plane magnetic anisotropy in (110) La2/3Ca1/3MnO3 films by anisotropic strain relaxation, Appl. Phys. Lett. 92(1), 012508 (2008)ADSCrossRefGoogle Scholar
  89. 89.
    J. X. Ma, X. F. Liu, T. Lin, G. Y. Gao, J. P. Zhang, W. B. Wu, X. G. Li, and J. Shi, Interface ferromagnetism in (110)-oriented La0:7Sr0:3MnO3/SrTiO3 ultrathin superlattices, Phys. Rev. B 79(17), 174424 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    A. Roy and D. Vanderbilt, Theory of prospective perovskite ferroelectrics with double Rocksalt order, Phys. Rev. B 83(13), 134116 (2011)ADSCrossRefGoogle Scholar
  91. 91.
    J. Chang, K. Lee, M. H. Jung, J. H. Kwon, M. Kim, and S. K. Kim, Emergence of room-temperature magnetic ordering in artificially fabricated ordered-doubleperovskite Sr2FeRuO6, Chem. Mater. 23(11), 2693 (2011)CrossRefGoogle Scholar
  92. 92.
    K. Y. Yang, W. G. Zhu, D. Xiao, S. Okamoto, Z. Q. Wang, and Y. Ran, Possible interaction-driven topological phases in (111) bilayers of LaNiO3, Phys. Rev. B 84(20), 201104(R) (2011)ADSCrossRefGoogle Scholar
  93. 93.
    D. Xiao, W. G. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun. 2, 596 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    R. Mishra, J. R. Soliz, P. M. Woodward, and W. Windl, Ca2MnRuO6: Magnetic order arising from chemical chaos, Chem. Mater. 24(14), 2757 (2012)CrossRefGoogle Scholar
  95. 95.
    F. D. M. Haldane, Model for a quantum Hall-effect without Landau-Levels–condensed-matter realization of the parity anomaly, Phys. Rev. Lett. 61(18), 2015 (1988)ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    D. Doennig, W. E. Pickett, and R. Pentcheva, Massive symmetry breaking in LaAlO3/SrTiO3 (111) quantum wells: A three-orbital strongly correlated generalization of graphene, Phys. Rev. Lett. 111(12), 126804 (2013)ADSCrossRefGoogle Scholar
  97. 97.
    C. R. Ma, M. Liu, C. L. Chen, Y. Lin, Y. R. Li, J. S. Horwitz, J. C. Jiang, E. I. Meletis, and Q. Y. Zhang, The origin of local strain in highly epitaxial oxide thin films, Sci. Rep. 3(1), 3092 (2013)ADSCrossRefGoogle Scholar
  98. 98.
    D. G. Schlom, L. Q. Chen, X. Q. Pan, A. Schmehl, and M. A. Zurbuchen, A thin film approach to engineering functionality into oxides, J. Am. Ceram. Soc. 91(8), 2429 (2008)CrossRefGoogle Scholar
  99. 99.
    J. Liu, M. Kareev, S. Prosandeev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices, Appl. Phys. Lett. 96(13), 133111 (2010)ADSCrossRefGoogle Scholar
  100. 100.
    J. L. Blok, X. Wan, G. Koster, D. H. A. Blank, and G. Rijnders, Epitaxial oxide growth on polar (111) surfaces, Appl. Phys. Lett. 99(15), 151917 (2011)ADSCrossRefGoogle Scholar
  101. 101.
    Y. Mukunoki, N. Nakagawa, T. Susaki, and H. Y. Hwang, Atomically flat (110) SrTiO3 and heteroepitaxy, Appl. Phys. Lett. 86(17), 171908 (2005)ADSCrossRefGoogle Scholar
  102. 102.
    G. Koster, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, Imposed layer-by-layer growth by pulsed laser interval deposition, Appl. Phys. Lett. 74(24), 3729 (1999)ADSCrossRefGoogle Scholar
  103. 103.
    M. Kareev, S. Prosandeev, B. Gray, J. Liu, P. Ryan, A. Kareev, E. Ju Moon, and J. Chakhalian, Sub-monolayer nucleation and growth of complex oxides at high supersaturation and rapid flux modulation, J. Appl. Phys. 109(11), 114303 (2011)ADSCrossRefGoogle Scholar
  104. 104.
    B. Dam, J. H. Rector, J. Johansson, J. Huijbregtse, and D. G. De Groot, Mechanism of incongruent ablation of SrTiO3, J. Appl. Phys. 83(6), 3386 (1998)ADSCrossRefGoogle Scholar
  105. 105.
    M. Hu, Q. Zhang, L. Gu, Q. Guo, Y. Cao, M. Kareev, J. Chakhalian, and J. Guo, Reconstruction-stabilized epitaxy of LaCoO3/SrTiO3 (111) heterostructures by pulsed laser deposition, Appl. Phys. Lett. 112(3), 031603 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fang Yang
    • 1
  • Yan Liang
    • 1
  • Li-Xia Liu
    • 1
    • 2
  • Qing Zhu
    • 1
    • 2
  • Wei-Hua Wang
    • 1
  • Xue-Tao Zhu
    • 1
    • 2
  • Jian-Dong Guo
    • 1
    • 2
    • 3
  1. 1.Beijing National Laboratory for Condensed Matter Physics & Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations