Skip to main content
Log in

Quantum confinement effect in β-SiC nanowires

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The quantum confinement effect is important in nanoelectronics and optoelectronics applications; however, there is a discrepancy between the theory of quantum confinement, which indicates that band-gap widening occurs only at small sizes, and experimental observations of band-gap widening in large-diameter nanowires (NWs). This paper reports an obvious blue shift of the absorption edge in the UV-visible absorption spectra of SiC NWs with diameters of 50–300 nm. On the basis of quantum confinement theory and high-resolution transmission electron microscopy images of SiC NWs, band-gap widening in SiC NWs with diameters of up to hundreds of nanometers is fully explained; the results could help to explain similar band-gap widening in other NWs with large diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Brus, Electronic wave functions in semiconductor clusters: Experiment and theory, J. Phys. Chem. 90(12), 2555 (1986)

    Article  Google Scholar 

  2. L. Han, M. Zeman and A. H. M. Smets, Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma, Appl. Phys. Lett. 106(21), 213106 (2015)

    Article  ADS  Google Scholar 

  3. L. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57(10), 1046 (1990)

    Article  ADS  Google Scholar 

  4. V. Lehmann and U. Gösele, Porous silicon formation: A quantum wire effect, Appl. Phys. Lett. 58(8), 856 (1991)

    Article  ADS  Google Scholar 

  5. X. Wu, J. Fan, T. Qiu, X. Yang, G. Siu, and P. K. Chu, Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites, Phys. Rev. Lett. 94(2), 026102 (2005)

    Article  ADS  Google Scholar 

  6. F. Koch, V. Petrova-Koch, and T. Muschik, The luminescence of porous Si: The case for the surface state mechanism, J. Lumin. 57(1–6), 271 (1993)

    Article  Google Scholar 

  7. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites, Phys. Rev. B 48(4), 2827 (1993)

    Article  ADS  Google Scholar 

  8. D. Dai, X. Guo, and J. Fan, Identification of luminescent surface defect in SiC quantum dots, Appl. Phys. Lett. 106(5), 053115 (2015)

    Article  ADS  Google Scholar 

  9. X. Wu, S. Xiong, G. Siu, G. Huang, Y. Mei, Z. Zhang, S. Deng, and C. Tan, Optical emission from excess Si defect centers in Si nanostructures, Phys. Rev. Lett. 91(15), 157402 (2003)

    Article  ADS  Google Scholar 

  10. M. Cahay, Quantum confinement VI: Nanostructured materials and devices, Proceedings of the International Symposium, The Electrochemical Society, 2001

    Google Scholar 

  11. X. Wu, S. Xiong, D. Fan, Y. Gu, X. Bao, G. Siu, and M. Stokes, Stabilized electronic state and its luminescence at the surface of oxygen-passivated porous silicon, Phys. Rev. B 62(12), R7759 (2000)

    Article  ADS  Google Scholar 

  12. T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3, Appl. Phys. Lett. 88(12), 123102 (2006)

    Article  ADS  Google Scholar 

  13. S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, World Scientific, 1994

    MATH  Google Scholar 

  14. S. Wang, C. Zhang, Z. Wang, and X. Zu, Quantum confinement effect in silicon carbide nanostructures: A first principles study, Optoelectron. Rel. Mater 4(6), 771 (2010)

    Google Scholar 

  15. S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts, Nanotechnology 17(6), 1695 (2006)

    Article  ADS  Google Scholar 

  16. V. Eskizeybek, A. Avci, and M. Chhowalla, Structural and optical properties of CdO nanowires synthesized from Cd(OH)2 precursors by calcination, Cryst. Res. Technol. 46(10), 1093 (2011)

    Article  Google Scholar 

  17. A. Phuruangrat, P. Dumrongrojthanath, O. Yayapao, T. Thongtem, and S. Thongtem, Solvothermal synthesis and photocatalytic properties of CdS nanowires under UV and visible irradiation, Mater. Sci. Semicond. Process. 26, 329 (2014)

    Article  Google Scholar 

  18. J. Y. Lee, X. Lu, and Q. Lin, High-Q silicon carbide photonic-crystal cavities, Appl. Phys. Lett. 106(4), 041106 (2015)

    Article  ADS  Google Scholar 

  19. H. P. Phan, D. V. Dao, P. Tanner, L. Wang, N. T. Nguyen, Y. Zhu, and S. Dimitrijev, Fundamental piezoresistive coefficients of p-type single crystalline 3CSiC, Appl. Phys. Lett. 104(11), 111905 (2014)

    Article  ADS  Google Scholar 

  20. R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, and X. Han, Piezoresistance behaviors of ultra-strained SiC nanowires, Appl. Phys. Lett. 101(23), 233109 (2012)

    Article  ADS  Google Scholar 

  21. H. P. Phan, The Piezoresistive Effect of Top Down p-Type 3C-SiC Nanowires, Springer International Publishing, 2017

    Book  Google Scholar 

  22. D. Pandey and P. Krishna, The origin of polytype structures, Progress in Crystal growth and Characterization, 7(1–4), 213 (1983)

    Article  Google Scholar 

  23. G. Li, X. Li, Z. Chen, J. Wang, H. Wang, and R. Che, Large areas of centimeters-long SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route, J. Phys. Chem. C 113(41), 17655 (2009)

    Article  Google Scholar 

  24. G. Peng, Y. Zhou, Y. He, X. Yu, X. A. Zhang, G. Y. Li, and H. Haick, UV-induced SiC nanowire sensors, J. Phys. D Appl. Phys. 48(5), 055102 (2015)

    Article  ADS  Google Scholar 

  25. G. Li, Ph. D. thesis, Synthesis and properties of ultralong SiC and Si3N4 nanowires, College of Science, National University of Defense Technology, China, 2010

    Google Scholar 

  26. G. Peng, Y. Zhou, Y. He, X. Yu, and G. Li, Fabrication and properties of ultraviolet photo-detectors based on SiC nanowires, Sci. China Phys. Mech. Astron. 55(7), 1168 (2012)

    Article  ADS  Google Scholar 

  27. Y. Li, C. Chen, J. T. Li, Y. Yang, and Z. M. Lin, Surface charges and optical characteristic of colloidal cubic SiC nanocrystals, Nanoscale Res. Lett. 6(1), 454 (2011)

    Article  ADS  Google Scholar 

  28. F. A. Reboredo, L. Pizzagalli, and G. Galli, Computational engineering of the stability and optical gaps of SiC quantum dots, Nano Lett. 4(5), 801 (2004)

    Article  ADS  Google Scholar 

  29. A. M. Rossi, T. E. Murphy, and V. Reipa, Ultraviolet photoluminescence from 6H silicon carbide nanoparticles, Appl. Phys. Lett. 92(25), 253112 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61675234) and the Advanced Research Foundation of the National University of Defense Technology (Grant No. zk16-03-40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Peng  (彭刚).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, G., Yu, X., He, YL. et al. Quantum confinement effect in β-SiC nanowires. Front. Phys. 13, 137802 (2018). https://doi.org/10.1007/s11467-018-0768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0768-0

Keywords

Navigation