Frontiers of Physics

, 13:137203 | Cite as

Electron drift velocity and mobility in graphene

Research Article
  • 15 Downloads

Abstract

We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.

Keywords

graphene mobility nano-electronic devices 

Notes

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2015XKMS077) and the National Natural Science Foundation of China (Grant Nos. 11604380 and 11774416).

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigoreva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Temperature-dependent transport in suspended graphene, Phys. Rev. Lett. 101(9), 096802 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano Lett. 10(2), 715 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, and A. A. Balandin, Low-frequency electronic noise in the double-gate single-layer graphene transistors, Appl. Phys. Lett. 95(3), 033103 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    L. M. Zhang and M. M. Fogler, Nonlinear screening and ballistic transport in a graphene p-n junction, Phys. Rev. Lett. 100(11), 116804 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Operation of graphene transistors at Gigahertz frequencies, Nano Lett. 9(1), 422 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Zhang and R. Tsu, Binding graphene sheets together using silicon: Graphene/silicon superlattice, Nanoscale Res. Lett. 5(5), 805 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    T. J. Echtermeyer, M. C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz, Graphene field-effect devices, Eur. Phys. J. Spec. Top. 148(1), 19 (2007)CrossRefGoogle Scholar
  10. 10.
    I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)Google Scholar
  11. 11.
    A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, Transport properties of graphene in the highcurrent limit, Phys. Rev. Lett. 103(7), 076601 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3(4), 206 (2008)CrossRefGoogle Scholar
  13. 13.
    X. F. Wang and T. Chakraborty, Collective excitations of Dirac electrons in a graphene layer with spin-orbit interactions, Phys. Rev. B 75(3), 033408 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    X.-L. Lei, Balance Equation Approach to Electron Transport in Semiconductors, World Scientific, 2000Google Scholar
  15. 15.
    X. F. Zhao, J. Zhang, S. M. Chen, and W. Xu, Cerenkov acoustic-phonon emission generated electrically from a polar semiconductor, J. Appl. Phys. 105(10), 104514 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    W. Xu, F. M. Peeters, and T. C. Lu, Dependence of resistivity on electron density and temperature in graphene, Phys. Rev. B 79(7), 073403 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    H. M. Dong, W. Xu, Z. Zeng, T. C. Lu, and F. M. Peeters, Quantum and transport conductivities in monolayer graphene, Phys. Rev. B 77(23), 235402 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    T. Stauber, N. M. R. Peres, and F. Guinea, Electronic transport in graphene: A semiclassical approach including midgap states, Phys. Rev. B 76(20), 205423 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    W. K. Tse and S. S. Das, Phonon-induced many-body renormalization of the electronic properties of graphene, Phys. Rev. Lett. 99(23), 236802 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyChina University of Mining and TechnologyXuzhouChina
  2. 2.Low Carbon Energy InstituteChina University of Mining and TechnologyXuzhouChina
  3. 3.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations