Skip to main content
Log in

Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The pressure versus temperature phase diagram of a system of particles interacting through a multiscale shoulder-like potential is exactly computed in one dimension. The N-shoulder potential exhibits N density anomaly regions in the phase diagram if the length scales can be connected by a convex curve. The result is analyzed in terms of the convexity of the Gibbs free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Hemmer and G. Stell, Fluids with Several Phase Transitions, Phys. Rev. Lett., 24(23), 1284 (1970)

    Article  ADS  Google Scholar 

  2. P. G. Debenedetti, V. S. Raghavan, and S. S. Borick, Spinodal curve of some supercooled liquids, J. Chem. Phys., 95(11), 4540 (1991)

    Article  Google Scholar 

  3. S. Sastry, P. G. Debenedetti, F. Sciortino, and H. E. Stanley, Singularity-free interpretation of the thermodynamics of supercooled water, Phys. Rev. E, 53(6), 6144 (1996)

    Article  ADS  Google Scholar 

  4. C. J. Roberts and P. G. Debenedetti, Polyamorphism and density anomalies in network-forming fluids: Zeroth-and first-order approximations, J. Chem. Phys., 105(2), 658 (1996)

    Article  ADS  Google Scholar 

  5. E. A. Jagla, Phase behavior of a system of particles with core collapse, Phys. Rev. E, 58(2), 1478 (1998)

    Article  ADS  Google Scholar 

  6. G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley, Generic mechanism for generating a liquid–liquid phase transition, Nature, 409(6821), 692 (2001)

    Article  ADS  Google Scholar 

  7. N. B. Wilding and J. E. Magee, Phase behavior and thermodynamic anomalies of core-softened fluids, Phys. Rev. E, 66(3), 031509 (2002)

    Article  ADS  Google Scholar 

  8. P. Camp, Structure and phase behavior of a twodimensional system with core-softened and long-range repulsive interactions, Phys. Rev. E, 68(6), 061506 (2003)

    Article  ADS  Google Scholar 

  9. M. Pretti and C. Buzano, Thermodynamic anomalies in a lattice model of water, J. Chem. Phys., 121(23), 11856 (2004)

    Article  ADS  Google Scholar 

  10. A. Balladares and M. C. Barbosa, Density anomaly in core-softened lattice gas, J. Phys.: Condens. Matter, 16(49), 8811 (2004)

    ADS  Google Scholar 

  11. A. B. Oliveira and M. C. Barbosa, Density anomaly in a competing interactions lattice gas model, J. Phys.: Condens. Matter, 17(3), 399 (2005)

    ADS  Google Scholar 

  12. Yu. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, Complex phase behavior of the system of particles with smooth potential with repulsive shoulder and attractive well, J. Chem. Phys., 134(4), 044523 (2011)

    Article  ADS  Google Scholar 

  13. G. S. Kell, Precise representation of volume properties of water at one atmosphere, J. Chem. Eng. Data, 12(1), 66 (1967)

    Article  Google Scholar 

  14. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Phase behaviour of metastable water, Nature, 360(6402), 324 (1992)

    Article  ADS  Google Scholar 

  15. J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, Metastable liquid–liquid transition in a molecular model of water, Nature, 510(7505), 385 (2014)

    Article  ADS  Google Scholar 

  16. A. Faraone, L. Liu, C. Y. Mou, C. W. Yen, and S. H. Chen, Fragile-to-strong liquid transition in deeply supercooled confined water, J. Chem. Phys., 121(22), 10843 (2004)

    Article  ADS  Google Scholar 

  17. J. A. Sellberg, C. Huang, T. A. McQueen, N. D. Loh, H. Laksmono, et al., Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature, 510, 381 (2014)

    Article  ADS  Google Scholar 

  18. H. Takahashi, Mathematical Physics in One Dimension, Academic Press, 1966, pp 25–34

    Book  Google Scholar 

  19. G. Gallavotti, Statistical Mechanics: A Short Treatise, Berlin: Springer, 1999, pp 162–164

    Book  MATH  Google Scholar 

  20. A. Barros de Oliveira, P. A. Netz, T. Colla, and M. C. Barbosa, Thermodynamic and dynamic anomalies for a three-dimensional isotropic core-softened potential, J. Chem. Phys., 124(8), 084505 (2006)

    Article  ADS  Google Scholar 

  21. A. Barros de Oliveira, P. A. Netz, T. Colla, and M. C. Barbosa, Thermodynamic and dynamic anomalies for a three-dimensional isotropic core-softened potential, J. Chem. Phys., 124(8), 084505 (2006)

    Article  ADS  Google Scholar 

  22. E. Barraz Salcedo, and M. C. Barbosa, Thermodynamic, dynamic, and structural anomalies for shoulderlike potentials, J. Chem. Phys., 131(9), 094504 (2009)

    Article  ADS  Google Scholar 

  23. M. A. A. Barbosa, E. Salcedo, and M. C. Barbosa, Multiple liquid-liquid critical points and density anomaly in core-softened potentials, Phys. Rev. E, 87(3), 032303 (2013)

    Article  ADS  Google Scholar 

  24. M. A. A. Barbosa, F. V. Barbosa, and F. A. Oliveira, Thermodynamic and dynamic anomalies in a onedimensional lattice model of liquid water, J. Chem. Phys., 134(2), 024511 (2011)

    Article  ADS  Google Scholar 

  25. F. B. V. da Silva, F. A. Oliveira, and M. A. A. Barbosa, Residual entropy and waterlike anomalies in the repulsive one dimensional lattice gas, J. Chem. Phys., 142(14), 144506 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Aurélio A. Barbosa or Marcia C. Barbosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzatti, E.O., Barbosa, M.A.A. & Barbosa, M.C. Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution. Front. Phys. 13, 136102 (2018). https://doi.org/10.1007/s11467-017-0725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0725-3

Keywords

Navigation