Skip to main content
Log in

Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddle-like curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is > 104, and the normalized delay bandwidth product within a new varying range of n g > 102 or n g > 103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, Slowlight optical buffers: Capabilities and fundamental limitations, J. Lightwave Technol. 23(12), 4046 (2005)

    Article  ADS  Google Scholar 

  2. S. K. Tripathy, S. Sahu, C. Mohapatro, and S. P. Dash, Implementation of optical logic gates using closed packed 2D-photonic crystal structure, Opt. Commun. 285(13–14), 3234 (2012)

    Article  ADS  Google Scholar 

  3. K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, Ultralow-energy and highcontrast all-optical switch involving Fano resonance based on coupled photonic crystal nanomicrocavities, Opt. Express 21(10), 11877 (2013)

    Article  ADS  Google Scholar 

  4. Y. Wan, S. Ge, Y. Guo, and M. Yun, Application of 2D graded eye-shape scatterers for slow light effect in photonic crystal line-defect waveguide, Optik (Stuttg.) 125(5), 1605 (2014)

    Article  ADS  Google Scholar 

  5. J. Chen, G. von Freymann, S. Choi, and G. Ozin, Amplified photochemistry with slow photons, Adv. Mater. 18(14), 1915 (2006)

    Article  Google Scholar 

  6. Z. Cai, Z. Xiong, X. Lu, and J. Teng, In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity, J. Mater. Chem. A 2(2), 545 (2014)

    Article  Google Scholar 

  7. T. Baba, Slow light in photonic crystals, Nat. Photon. 2, 465 (2008)

    Article  ADS  Google Scholar 

  8. A. C. Liapis, Optimizing photonic crystal waveguides for on-chip spectroscopic applications, Opt. Express 21(8), 10160 (2013)

    Article  ADS  Google Scholar 

  9. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, Dispersion engineered slow light in photonic crystal: A comparison, J. Opt. 12(10), 104004 (2010)

    Article  ADS  Google Scholar 

  10. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Coupled-resonator optical waveguide: A proposal and analysis, Opt. Lett. 24(11), 711 (1999)

    Article  ADS  Google Scholar 

  11. K. Sakai, E. Miyai, and S. Noda, Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization, Opt. Express 15(7), 3981 (2007)

    Article  ADS  Google Scholar 

  12. E. Waks and J. Vuckovic, Coupled mode theory for photonic crystal cavity-waveguide interaction, Opt. Express 13(13), 5064 (2005)

    Article  ADS  Google Scholar 

  13. H. Tian, F. Long, W. Liu, and Y. Ji, Tunable slow light and buffer capability in photonic crystal coupledmicrocavity waveguides based on electro-optic effect, Opt. Commun. 285(10–11), 2760 (2012)

    Article  ADS  Google Scholar 

  14. K. Tian, W. Arora, S. Takahashi, J. Hong, and G. Barbastathis, Dynamic group velocity control in a mechanically tunable photonic-crystal coupled-resonator optical waveguide, Phys. Rev. B 80(13), 134305 (2009)

    Article  ADS  Google Scholar 

  15. K. Üstün and H. Kurt, Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides, Opt. Express 18(20), 21155 (2010)

    Article  ADS  Google Scholar 

  16. N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanomicrocavity arrays, Opt. Lett. 39(8), 2290 (2014)

    Article  ADS  Google Scholar 

  17. H. Kurt, M. Turduev, and I. H. Giden, Crescent shaped dielectric periodic structure for light manipulation, Opt. Express 20(7), 7184 (2012)

    Article  ADS  Google Scholar 

  18. Y. Wan, Z. Cai, Q. Li, and X. S. Zhao, Simulation and fabrication of THz waveguides with silicon wafer by using eye-shaped pillars as building blocks, Appl. Phys. A 102(2), 373 (2011)

    Article  ADS  Google Scholar 

  19. Y. Wan, K. Fu, C. H. Li, and M. J. Yun, Improving slow light effect in photonic crystal line-defect waveguide by using eye-shaped scatterers, Opt. Commun. 286, 192 (2013)

    Article  ADS  Google Scholar 

  20. C. Li, R. Su, Y. Wang, and X. Zhang, Theoretical study of ultra-wideband slow light in dual-stub-coupled plasmonic waveguide, Opt. Commun. 377, 10 (2016)

    Article  ADS  Google Scholar 

  21. N. Zhu, Y. Y. Li, C. C. Chen, and S. Yan, Slow light in dual-periodic photonic crystals based slotted-waveguide coupled cavity, Opt. Laser Technol. 83, 125 (2016)

    Article  ADS  Google Scholar 

  22. Y. Wan, X. Ge, S. Xu, Y. Guo, and F. Yuan, Ultra-slow light effects in symmetric and asymmetric waveguide structures with moon-like scatterers, Front. Phys. 12(1), 124204 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11144007) and the Natural Science Foundation of Shandong Province (Grant No. ZR2016AM27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Jiang, LJ., Xu, S. et al. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW. Front. Phys. 13, 134202 (2018). https://doi.org/10.1007/s11467-017-0719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0719-1

Keywords

Navigation