Skip to main content
Log in

Fragile to strong crossover and Widom line in supercooled water: A comparative study

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to discuss the relationship between the dynamics and thermodynamics of water in the supercooled region. Reviewed case studies comprehend bulk water simulated with the SPC/E, TIP4P and TIP4P/2005 potentials, water at protein interfaces, and water in solution with electrolytes. Upon supercooling, the fragile to strong crossover in the α-relaxation of water is found to occur when the Widom line emanating from the liquid-liquid critical point is crossed. This appears to be a general characteristic of supercooled water, not depending on the applied interaction potential and/or different local environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, and G. M. P. Lars, Water: A tale of two liquids, Chem. Rev. 116(13), 7463 (2016)

    Article  Google Scholar 

  2. P. Ball, Water -An enduring mystery, Nature 452(7185), 291 (2008)

    Article  ADS  Google Scholar 

  3. P. G. Debenedetti, Supercooled and glassy water, J. Phys.: Condens. Matter 15(45), R1669 (2003)

    ADS  Google Scholar 

  4. C. A. Angell, R. D. Bressel, M. Hemmati, E. J. Sare, and J. C. Tucker, Water and its anomalies in perspective: Tetrahedral liquids with and without liquid-liquid phase transitions, Phys. Chem. Chem. Phys. 2(8), 1559 (2000)

    Article  Google Scholar 

  5. P. G. Debenedetti, Metastable Liquids: Concepts and Principles, Princeton: Princeton University Press, 1996

    Google Scholar 

  6. A. Sakai, T. Matsumoto, D. Hirai, and T. Niino, Newly developed encapsulation-dehydration protocol for plantcryopreservation, Cryo Lett. 21(1), 53 (1999)

    Google Scholar 

  7. W. Kauzmann, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14, 1 (1959)

    Article  Google Scholar 

  8. F. Franks, Water: A Matrix of Life, RSC Paperbacks, 2nd edition, Cambridge, UK: The Royal Society of Chemistry, 2000

    Google Scholar 

  9. P. G. Debenedetti and H. E. Stanley, Supercooled and glassy water, Phys. Today 56(6), 40 (2003)

    Article  Google Scholar 

  10. C. A. Angell, J. Shuppert, and J. C. Tucker, Anomalous properties of supercooled water. Heat capacity, expansivity, and proton magnetic resonance chemical shift from 0 to -38%, J. Phys. Chem. 77(26), 3092 (1973)

    Article  Google Scholar 

  11. R. J. Speedy and C. A. Angell, Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at -45 °C, J. Chem. Phys. 65(3), 851 (1976)

    Article  ADS  Google Scholar 

  12. O. Mishima and H. E. Stanley, The relationship between liquid, supercooled and glassy water, Nature 396(6709), 329 (1998)

    Google Scholar 

  13. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Phase behaviour of metastable water, Nature 360(6402), 324 (1992)

    Article  ADS  Google Scholar 

  14. K. Winkel, M. S. Elsaesser, E. Mayer, and T. Loerting, Water polyamorphism: Reversibility and (dis) continuity, J. Chem. Phys. 128(4), 044510 (2008)

    Article  ADS  Google Scholar 

  15. O. Mishima and H. E. Stanley, Decompression-induced melting of ice IV and the liquid-liquid transition in water, Nature 392(6672), 164 (1998)

    Article  ADS  Google Scholar 

  16. O. Mishima, L. D. Calvert, and E. Whalley, An apparently first-order transition between two amorphous phases of ice induced by pressure, Nature 314(6006), 76 (1985)

    Article  ADS  Google Scholar 

  17. K. Winkel, E. Mayer, and T. Loerting, Equilibrated high-density amorphous ice and its first-order transition to the low-density form, J. Phys. Chem. B 115(48), 14141 (2011)

    Article  Google Scholar 

  18. C. U. Kim, B. Barstow, M. V. Tate, and S. M. Gruner, Evidence for liquid water during the high-density to lowdensity amorphous ice transition, Proc. Natl. Acad. Sci. USA 106(12), 4596 (2009)

    Article  ADS  Google Scholar 

  19. G. Franzese and H. E. Stanley, The widom line of supercooled water, J. Phys.: Condens. Matter 19(20), 205126 (2007)

    ADS  Google Scholar 

  20. L. Xu, P. Kumar, S. V. Buldyrev, S. H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition, Proc. Natl. Acad. Sci. USA 102(46), 16558 (2005)

    Article  ADS  Google Scholar 

  21. D. Corradini, M. Rovere, and P. Gallo, A route to explain water anomalies from results on an aqueous solution of salt, J. Chem. Phys. 132(13), 134508 (2010)

    Article  ADS  Google Scholar 

  22. J. L. F. Abascal and C. Vega, Widom line and the liquidliquid critical point for the TIP4P/2005 water model, J. Chem. Phys. 133(23), 234502 (2010)

    Article  ADS  Google Scholar 

  23. P. Gallo, F. Sciortino, P. Tartaglia, and S. H. Chen, Slow dynamics of water molecules in supercooled states, Phys. Rev. Lett. 76(15), 2730 (1996)

    Article  ADS  Google Scholar 

  24. F. Sciortino, P. Gallo, P. Tartaglia, and S. H. Chen, Supercooled water and the kinetic glass transition, Phys. Rev. E 54(6), 6331 (1996)

    Article  ADS  Google Scholar 

  25. W. Gotze and L. Sjogren, Relaxation processes in supercooled liquids, Rep. Prog. Phys. 55(3), 241 (1992)

    Article  ADS  Google Scholar 

  26. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, Oxford: Oxford University Press, 2009

    MATH  Google Scholar 

  27. P. Gallo and M. Rovere, Mode coupling and fragile to strong transition in supercooled TIP4P water, J. Chem. Phys. 137(16), 164503 (2012)

    Article  ADS  Google Scholar 

  28. P. Gallo, D. Corradini, and M. Rovere, Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl, J. Chem. Phys. 139(20), 204503 (2013)

    Article  ADS  Google Scholar 

  29. P. Gallo, M. Rovere, and E. Spohr, Supercooled confined water and the mode coupling crossover temperature, Phys. Rev. Lett. 85(20), 4317 (2000)

    Article  ADS  Google Scholar 

  30. P. Gallo, M. Rovere, and E. Spohr, Glass transition and layering effects in confined water: A computer simulation study, J. Chem. Phys. 113(24), 11324 (2000)

    Article  ADS  Google Scholar 

  31. P. Gallo, M. Rovere, and S. H. Chen, Dynamic crossover in supercooled confined water: Understanding bulk properties through confinement, J. Phys. Chem. Lett. 1(4), 729 (2010)

    Article  Google Scholar 

  32. P. Gallo, M. Rovere, and S. H. Chen, Water confined in MCM-41: A mode coupling theory analysis, J. Phys.: Condens. Matter 24(6), 064109 (2012)

    ADS  Google Scholar 

  33. M. De Marzio, G. Camisasca, M. Rovere, and P. Gallo, Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water, J. Chem. Phys. 144(7), 074503 (2016)

    Article  ADS  Google Scholar 

  34. A. Dehaoui, B. Issenmann, and F. Caupin, Viscosity of deeply supercooled water and its coupling to molecular diffusion, Proc. Natl. Acad. Sci. USA 112(39), 12020 (2015)

    Article  ADS  Google Scholar 

  35. R. Torre, P. Bartolini, and R. Righini, Structural relaxation in supercooled water by time-resolved spectroscopy, Nature 428(6980), 296 (2004)

    Article  ADS  Google Scholar 

  36. F. W. Starr, F. Sciortino, and H. E. Stanley, Dynamics of simulated water under pressure, Phys. Rev. E 60(6), 6757 (1999)

    Article  ADS  Google Scholar 

  37. A. Faraone, L. Liu, C. Y. Mou, C. W. Yen, and S. H. Chen, Fragile-to-strong liquid transition in deeply supercooled confined water, J. Chem. Phys. 121(22), 10843 (2004)

    Article  ADS  Google Scholar 

  38. L. Liu, S. H. Chen, A. Faraone, C. W. Yen, and C. Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802 (2005)

    Article  ADS  Google Scholar 

  39. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C. Y. Mou, and S. H. Chen, The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results, J. Chem. Phys. 124(16), 161102 (2006)

    Article  ADS  Google Scholar 

  40. Y. Zhang, M. Lagi, E. Fratini, P. Baglioni, E. Mamontov, and S. H. Chen, Dynamic susceptibility of supercooled water and its relation to the dynamic crossover phenomenon, Phys. Rev. E 79(4), 040201 (2009)

    Article  ADS  Google Scholar 

  41. L. Liu, S. H. Chen, A. Faraone, C.W. Yen, C. Y. Mou, A. I. Kolesnikov, E. Mamontov, and J. Leao, Quasielastic and inelastic neutron scattering investigation of fragile-to-strong crossover in deeply supercooled water confined in nanoporous silica matrices, J. Phys.: Condens. Matter 18(36), S2261 (2006)

    Google Scholar 

  42. Z. Wang, P. Le, K. Ito, J. B. Leão, M. Tyagi, and S. H. Chen, Dynamic crossover in deeply cooled water confined in mcm-41 at 4 kbar and its relation to the liquidliquid transition hypothesis, J. Chem. Phys. 143(11), 114508 (2015)

    Article  ADS  Google Scholar 

  43. Y. Xu, N. G. Petrik, R. S. Smith, B. D. Kay, and G. A. Kimmel, Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K, Proc. Natl. Acad. Sci. USA 113(52), 14921 (2016)

    Article  ADS  Google Scholar 

  44. J. M. Zanotti, M. C. Bellissent-Funel, and S. H. Chen, Relaxational dynamics of supercooled water in porous glass, Phys. Rev. E 59(3), 3084 (1999)

    Article  ADS  Google Scholar 

  45. P. Gallo, M. Rovere, and S. H. Chen, Anomalous dynamics of water confined in MCM-41 at different hydrations, J. Phys.: Condens. Matter 22(28), 284102 (2010)

    Google Scholar 

  46. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926 (1983)

    Article  ADS  Google Scholar 

  47. J. L. F. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123(23), 234505 (2005)

    Article  ADS  Google Scholar 

  48. G. Camisasca, M. De Marzio, D. Corradini, and P. Gallo, Two structural relaxations in protein hydration water and their dynamic crossovers, J. Chem. Phys. 145(4), 044503 (2016)

    Article  ADS  Google Scholar 

  49. J. C. Herman, Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials, J. Phys. Chem. 91(24), 6269 (1987)

    Article  Google Scholar 

  50. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B 102(18), 3586 (1998)

    Article  Google Scholar 

  51. A. D. MacKerell, M. Feig, and C. L. Brooks, Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations, J. Comput. Chem. 25(11), 1400 (2004)

    Article  Google Scholar 

  52. A. Scala, F. W. Starr, E. La Nave, H. E. Stanley, and F. Sciortino, Free energy surface of supercooled water, Phys. Rev. E 62(6), 8016 (2000)

    Article  ADS  Google Scholar 

  53. D. Corradini and P. Gallo, Liquid-liquid coexistence in nacl aqueous solutions: a simulation study of concentration effects, J. Phys. Chem. B 115, 1461 (2011)

    Article  Google Scholar 

  54. D. Corradini, M. Rovere, and P. Gallo, Structural properties of high and low density water in a supercooled aqueous solution of salt, J. Phys. Chem. B 115(6), 1461 (2011)

    Article  Google Scholar 

  55. C. Vega, J. L. F. Abascal, M. M. Conde, and J. L. Aragones, What ice can teach us about water interactions: A critical comparison of the performance of different water models, Faraday Discuss. 141, 251 (2009)

    Article  ADS  Google Scholar 

  56. K. P. Jensen and W. L. Jorgensen, Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions, J. Chem. Theory Comput. 2(6), 1499 (2006)

    Article  Google Scholar 

  57. A. Magno and P. Gallo, Understanding the Mechanisms of Bioprotection: A Comparative Study of Aqueous Solutions of Trehalose and Maltose upon Supercooling, J. Phys. Chem. Lett. 2(9), 977 (2011)

    Article  Google Scholar 

  58. D. Corradini, E. G. Strekalova, H. E. Stanley, and P. Gallo, Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose, Sci. Rep. 3(1), 1218 (2013)

    Article  ADS  Google Scholar 

  59. P. Kumar, Z. Yan, Limei Xu, M. G. Mazza, S. V. Buldyrev, S. H. Chen, S. Sastry, and H. E. Stanley, Glass transition in biomolecules and the liquid-liquid critical point of water, Phys. Rev. Lett. 97(17), 177802 (2006)

    Article  ADS  Google Scholar 

  60. S. H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, E. Mamontov, and M. Fomina, Observation of fragileto-strong dynamic crossover in protein hydration water, Proc. Natl. Acad. Sci. USA 103(24), 9012 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Gallo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Marzio, M., Camisasca, G., Rovere, M. et al. Fragile to strong crossover and Widom line in supercooled water: A comparative study. Front. Phys. 13, 136103 (2018). https://doi.org/10.1007/s11467-017-0714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0714-6

Keywords

Navigation