Skip to main content
Log in

Structural properties of water confined by phospholipid membranes

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Biological membranes are essential for cell life and hydration. Water provides the driving force for the assembly and stability of many cell components. Here, we study the structural properties of water in a phospholipid membrane. We characterize the local structures, inspecting the intermediate range order (IRO) and adopting a sensitive local order metric recently proposed by Martelli et al. that measures and grades the degree of overlap of the local environment with the structures of perfect ice. Close to the membrane, water acquires a high IRO and changes its dynamical properties; i.e., its translational and rotational degrees of freedom slow in a region that extends over ≃ 1 nm from the membrane interface. Surprisingly, we show that at distances as far as ≃ 2:5 nm from the interface, although the bulk-like dynamics are recovered, the IRO of water is still slightly higher than that in the bulk under the same thermodynamic conditions. Therefore, the water-membrane interface has a structural effect at ambient conditions that propagates further than the often-invoked 1-nm length scale. Consequently, this should be considered when analyzing experimental data of water confined by membranes and could help us to understand the role of water in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. W. Hamley, Introduction to Soft Matter, John Wiley and Sons, West Sussex, England, 2007

    Google Scholar 

  2. J. Fitter, R. E. Lechner, and N. A. Dencher, Interactions of hydration water and biological membranes studied by neutron scattering, J. Phys. Chem. B 103(38), 8036 (1999)

    Article  Google Scholar 

  3. M. Trapp, T. Gutberlet, F. Juranyi, T. Unruh, B. Demé, M. Tehei, and J. Peters, Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering, J. Chem. Phys. 133(16), 164505 (2010)

    Article  ADS  Google Scholar 

  4. S. R. Wassall, Pulsed field gradient-spin echo NMR studies of water diffusion in a phospholipid model membrane, Biophys. J. 71(5), 2724 (1996)

    Article  ADS  Google Scholar 

  5. V. V. Volkov, D. J. Palmer, and R. Righini, Distinct water species confined at the interface of a phospholipid membrane, Phys. Rev. Lett. 99(7), 078302 (2007)

    Article  ADS  Google Scholar 

  6. W. Zhao, D. E. Moilanen, E. E. Fenn, and M. D. Fayer, Water at the surfaces of aligned phospholipid multibilayer model membranes probed with ultrafast vibrational spectroscopy, J. Am. Chem. Soc. 130(42), 13927 (2008)

    Article  Google Scholar 

  7. K. J. Tielrooij, D. Paparo, L. Piatkowski, H. J. Bakker, and M. Bonn, Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy, Biophys. J. 97(9), 2484 (2009)

    Article  ADS  Google Scholar 

  8. W. Hua, D. Verreault, and H. C. Allen, Solvation of calciumphosphate headgroup complexes at the dppc/aqueous interface, ChemPhysChem 16(18), 3910 (2015)

    Article  Google Scholar 

  9. T. Róg, K. Murzyn, and M. Pasenkiewicz-Gierula, The dynamics of water at the phospholipid bilayer surface: A molecular dynamics simulation study, Chem. Phys. Lett. 352(5–6), 323 (2002)

    Article  ADS  MATH  Google Scholar 

  10. S. Y. Bhide and M. L. Berkowitz, Structure and dynamics of water at the interface with phospholipid bilayers, J. Chem. Phys. 123(22), 224702 (2005)

    Article  ADS  Google Scholar 

  11. M. L. Berkowitz, D. L. Bostick, and S. Pandit, Aqueous solutions next to phospholipid membrane surfaces: Insights from simulations, Chem. Rev. 106(4), 1527 (2006)

    Article  Google Scholar 

  12. Y. von Hansen, S. Gekle, and R. R. Netz, Anomalous anisotropic diffusion dynamics of hydration water at lipid membranes, Phys. Rev. Lett. 111(11), 118103 (2013)

    Article  ADS  Google Scholar 

  13. Z. Zhang and M. L. Berkowitz, Orientational dynamics of water in phospholipid bilayers with different hydration levels, J. Phys. Chem. B 113(21), 7676 (2009)

    Article  Google Scholar 

  14. S. M. Gruenbaum and J. L. Skinner, Vibrational spectroscopy of water in hydrated lipid multi-bilayers (i): Infrared spectra and ultrafast pump-probe observables, J. Chem. Phys. 135(7), 075101 (2011)

    Article  ADS  Google Scholar 

  15. C. Calero, E. H. Stanley, and G. Franzese, Structural interpretation of the large slowdown of water dynamics at stacked phospholipid membranes for decreasing hydration level: All-atom molecular dynamics, Materials 9(5), 319 (2016)

    Article  ADS  Google Scholar 

  16. F. Martelli, H.Y. Ko, E. C. Oǧuz, and R. Car, A local order metric for condensed phase environments, arXiv: 1609.03123 [physics.comp-ph]

  17. M. De Marzio, G. Camisasca, M. M. Conde, M. Rovere, and P. Gallo, Structural properties and fragile to strong transition in confined water, J. Chem. Phys. 146(8), 084505 (2017)

    Article  ADS  Google Scholar 

  18. R. Zangi and B. J. Berne, Temperature dependence of dimerization and dewetting of large-scale hydrophobes: A molecular dynamics study, J. Phys. Chem. B 112(29), 8634 (2008)

    Article  Google Scholar 

  19. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781 (2005)

    Article  Google Scholar 

  20. J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. Jr MacKerell, and R. W. Pastor, Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types, J. Phys. Chem. B 114(23), 7830 (2010)

    Article  Google Scholar 

  21. J. B. Lim, B. Rogaski, and J. B. Klauda, Update of the cholesterol force field parameters in CHARMM, J. Phys. Chem. B 116(1), 203 (2012)

    Article  Google Scholar 

  22. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926 (1983)

    Article  ADS  Google Scholar 

  23. Jr. A. D. MacKerell, D. Bashford, M. Bellott, Jr. R. L. Dunbrack, J. D. Evanseck, et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B 102(18), 3586 (1998)

    Article  Google Scholar 

  24. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103(19), 8577 (1995)

    Article  ADS  Google Scholar 

  25. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Phys. Chem. 81(8), 3684 (1984)

    Article  Google Scholar 

  26. S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks, Constant pressure molecular dynamics simulation: The Langevin piston method, J. Phys. Chem. 103(11), 4613 (1995)

    Article  Google Scholar 

  27. R. C. Read and J. R. Wilson, An Atlas of Graphs, Oxford University Press, 2016

    MATH  Google Scholar 

Download references

Acknowledgements

C. C. B. and G. F. thank the Spanish Ministry of Economy and Knowledge (MINECO) for financial support and the European Fund for Regional Development (FEDER) for grant FIS2015-66879-C2-2-P and the Barcelona Supercomputing Center (projects QCM-2014-3-0029 and QCM-2015-3-0023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fausto Martelli or Giancarlo Franzese.

Additional information

arXiv: 1703.07835 [cond-mat.soft]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martelli, F., Ko, HY., Borallo, C.C. et al. Structural properties of water confined by phospholipid membranes. Front. Phys. 13, 136801 (2018). https://doi.org/10.1007/s11467-017-0704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0704-8

Keywords

Navigation