Skip to main content
Log in

High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed “globally optimal” point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel–Fulcher–Tammann behavior to a linear trend with increasing temperature was detected at T* ≈ 309 and T* ≈ 285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed at T* ± 315–5 K. We also verified that for the coefficient of thermal expansion α P (T, P), the isobaric α P (T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross near T*, where the lifetimes are about 1 ps. For T < T*, hydrogen bonds persist longer than nearest neighbors, suggesting that the hydrogen bonding network dominates the water structure at T < T*, whereas for T > T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ball, Water: Water an enduring mystery, Nature 452 (7185), 291 (2008)

    Article  ADS  Google Scholar 

  2. P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, and L. G. M. Pettersson, Water: A tale of two liquids, Chem. Rev. 116(13), 7463 (2016)

    Article  Google Scholar 

  3. A. Nilsson and L. G. M. Pettersson, The structural origin of anomalous properties of liquid water, Nat. Commun. 6, 8998 (2015)

    Article  ADS  Google Scholar 

  4. H. E. Stanley, Advances in Chemical Physics: Liquid Polymorphism, Vol. 152, John Wiley & Sons, 2013

    Book  Google Scholar 

  5. J. H. Simpson and H. Y. Carr, Diffusion and nuclear spin relaxation in water, Phys. Rev. 111(5), 1201 (1958)

    Article  ADS  Google Scholar 

  6. F. Mallamace, C. Corsaro, and H. E. Stanley, A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993 (2012)

    Article  ADS  Google Scholar 

  7. F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water, Faraday Discuss. 167, 95 (2013)

    Article  ADS  MATH  Google Scholar 

  8. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, and H. E. Stanley, Thermodynamic properties of bulk and confined water, J. Chem. Phys. 141(18), 18C504 (2014)

    Article  MATH  Google Scholar 

  9. H. R. Pruppacher, Self-Diffusion coefficient of supercooled water, J. Chem. Phys. 56(1), 101 (1972)

    Article  ADS  Google Scholar 

  10. NIST Chemistry WebBook, 2008. http://webbook.nist.gov/chemistry/uid/

  11. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, H. E. Stanley, and S. H. Chen, Some thermodynamical aspects of protein hydration water, J. Chem. Phys. 142(21), 215103 (2015)

    Article  ADS  MATH  Google Scholar 

  12. R. Speedy and C. Angell, Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at ??45 ?C, J. Chem. Phys. 65(3), 851 (1976)

    Article  ADS  Google Scholar 

  13. P. W. Bridgman, Water, in the liquid and five solid forms, under pressure, in: Proceedings of the American Academy of Arts and Sciences, pp 441–558, JSTOR, 1912

    Google Scholar 

  14. G. S. Kell, Density, thermal expansivity, and compressibility of liquid water from 0°C to 150°C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, J. Chem. Eng. Data 20(1), 97 (1975)

    Article  Google Scholar 

  15. G. Kell and E. Whalley, Reanalysis of the density of liquid water in the range 0–150 °C and 0–1 kbar, J. Chem. Phys. 62(9), 3496 (1975)

    Article  ADS  Google Scholar 

  16. C. Sorensen, Densities and partial molar volumes of supercooled aqueous solutions, J. Chem. Phys. 79(3), 1455 (1983)

    Article  ADS  Google Scholar 

  17. D. Hare and C. Sorensen, Densities of supercooled H2O and D2O in 25 glass capillaries, J. Chem. Phys. 84(9), 5085 (1986)

    Article  ADS  Google Scholar 

  18. D. Hare and C. Sorensen, The density of supercooled water (II): Bulk samples cooled to the homogeneous nucleation limit, J. Chem. Phys. 87(8), 4840 (1987)

    Article  ADS  Google Scholar 

  19. O. Mishima, Volume of supercooled water under pressure and the liquid-liquid critical point, J. Chem. Phys. 133(14), 144503 (2010)

    Article  ADS  Google Scholar 

  20. W. D. Wilson, Speed of sound in distilled water as a function of temperature and pressure, J. Acoust. Soc. Am. 31(8), 1067 (1959)

    Article  ADS  Google Scholar 

  21. R. C. Dougherty and L. N. Howard, Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties, J. Chem. Phys. 109(17), 7379 (1998)

    Article  ADS  Google Scholar 

  22. H. Vogel, The law of the relation between the viscosity of liquids and the temperature, Phys. Z. 22, 645 (1921)

    Google Scholar 

  23. G. S. Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8(6), 339 (1925)

    Article  Google Scholar 

  24. G. Tammann and W. Hesse, The dependence of viscosity upon the temperature of supercooled liquids, Z. Anorg. Allg. Chem. 156, 245 (1926)

    Article  Google Scholar 

  25. W. S. Price, H. Ide, and Y. Arata, Self-Diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements, J. Phys. Chem. A 103(4), 448 (1999)

    Article  Google Scholar 

  26. D. Laage and J. T. Hynes, A molecular jump mechanism of water reorientation, Science 311 (5762), 832 (2006)

  27. D. Laage and J. T. Hynes, On the molecular mechanism of water reorientation, J. Phys. Chem. B 112(45), 14230 (2008)

    Article  Google Scholar 

  28. G. Stirnemann and D. Laage, Direct evidence of angular jumps during water reorientation through twodimensional infrared anisotropy, J. Phys. Chem. Lett. 1(10), 1511 (2010)

    Article  Google Scholar 

  29. D. Laage, G. Stirnemann, F. Sterpone, and J. T. Hynes, Water jump reorientation: from theoretical prediction to experimental observation, Acc. Chem. Res. 45(1), 53 (2012)

    Article  Google Scholar 

  30. D. Laage, G. Stirnemann, F. Sterpone, R. Rey, and J. T. Hynes, Reorientation and allied dynamics in water and aqueous solutions, Annu. Rev. Phys. Chem. 62(1), 395 (2011)

    Article  ADS  Google Scholar 

  31. L. B. Skinner, C. J. Benmore, J. C. Neuefeind, and J. B. Parise, The structure of water around the compressibility minimum, J. Chem. Phys. 141(21), 214507 (2014)

    Article  ADS  Google Scholar 

  32. D. Schlesinger, K. T. Wikfeldt, L. B. Skinner, C. J. Benmore, A. Nilsson, and L. G. M. Pettersson, The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water, J. Chem. Phys. 145(8), 084503 (2016)

    Article  ADS  Google Scholar 

  33. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, and G. Dugo, The role of water in protein’s behavior: The two dynamical crossovers studied by NMR and FTIR techniques, Comput. Struct. Biotechnol. J. 13, 33 (2015)

    Article  MATH  Google Scholar 

  34. P. Demontis, J. Gulín-González, M. Masia, M. Sant, and G. B. Suffritti, The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study, J. Chem. Phys. 142(24), 244507 (2015)

    Article  ADS  Google Scholar 

  35. H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. L. Hura, and T. Head-Gordon, Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew, J. Chem. Phys. 120 (20), 9665 (2004)

    Article  ADS  Google Scholar 

  36. P. Demontis, J. Gulín-González, M. Masia, and G. B. Suffritti, The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment, J. Phys. Condens. Matter 22(28), 284106 (2010)

    Article  Google Scholar 

  37. P. Cicu, P. Demontis, S. Spanu, G. B. Suffritti, and A. Tilocca, Electric-field-dependent empirical potentials for molecules and crystals: A first application to flexible water molecule adsorbed in zeolites, J. Chem. Phys. 112(19), 8267 (2000)

    Article  ADS  Google Scholar 

  38. S. Izadi, R. Anandakrishnan, and A. V. Onufriev, Building water models: A different approach, J. Phys. Chem. Lett. 5(21), 3863 (2014)

    Article  Google Scholar 

  39. R. Anandakrishnan, C. Baker, S. Izadi, and A. V. Onufriev, Point charges optimally placed to represent the multipole expansion of charge distributions, PLoS ONE 8, e67715 (2013)

    Article  ADS  Google Scholar 

  40. C. Bergonzo and T. E. Cheatham, Improved force field parameters lead to a better description of RNA structure, J. Chem. Theory Comput. 11 (9), 3969 (2015)

    Article  Google Scholar 

  41. K. Gao, J. Yin, N. M. Henriksen, A. T. Fenley, and M. K. Gilson, Binding enthalpy calculations for a neutral hostguest pair yield widely divergent salt effects across water models, J. Chem. Theory Comput. 11(10), 4555 (2015)

    Article  Google Scholar 

  42. C. N. Nguyen, T. Kurtzman, and M. K. Gilson, Spatial decomposition of translational water-water correlation entropy in binding pockets, J. Chem. Theory Comput. 12(1), 414 (2016)

    Article  Google Scholar 

  43. F. Häse and M. Zacharias, Free energy analysis and mechanism of base pair stacking in nicked DNA, Nucleic Acids Res. 44 (15), 7100 (2016)

    Google Scholar 

  44. A. Mukhopadhyay, I. S. Tolokh, and A. V. Onufriev, Accurate evaluation of charge asymmetry in aqueous solvation, J. Phys. Chem. B 119(20), 6092 (2015)

    Article  Google Scholar 

  45. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781 (2005)

    Article  Google Scholar 

  46. I. C. Yeh and G. Hummer, System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions, J. Phys. Chem. B 108(40), 15873 (2004)

    Article  Google Scholar 

  47. R. G. Gordon, Advances in Magnetic Resonance, Vol. 3, p. 1, New York: Academic Press Inc., 1968

    Google Scholar 

  48. A. Y. Zasetsky, Dielectric relaxation in liquid water: Two fractions or two dynamics? Phys. Rev. Lett. 107 (11), 117601 (2011)

    Article  ADS  Google Scholar 

  49. C. J. Fecko, J. J. Loparo, S. T. Roberts, and A. Tokmakoff, Local hydrogen bonding dynamics and collective reorganization in water: Ultrafast infrared spectroscopy of HOD/D2O, J. Chem. Phys. 122(5), 054506 (2005)

    Article  ADS  Google Scholar 

  50. J. J. Loparo, S. T. Roberts, and A. Tokmakoff, Multidimensional infrared spectroscopy of water (I): Vibrational dynamics in two-dimensional IR line shapes, J. Chem. Phys. 125(19), 194521 (2006)

    Article  ADS  Google Scholar 

  51. J. J. Loparo, S. T. Roberts, and A. Tokmakoff, Multidimensional infrared spectroscopy of water (II): Hydrogen bond switching dynamics, J. Chem. Phys. 125(19), 194522 (2006)

    Article  ADS  Google Scholar 

  52. J. Stenger, D. Madsen, P. Hamm, E. T. Nibbering, and T. Elsaesser, A photon echo peak shift study of liquid water, J. Phys. Chem. A 106 (10), 2341 (2002)

    Article  Google Scholar 

  53. M. Cowan, B. D. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O, Nature 434 (7030), 199 (2005)

    Article  ADS  Google Scholar 

  54. A. Luzar and D. Chandler, Hydrogen-bond kinetics in liquid water, Nature 379 (6560), 55 (1996)

    Article  ADS  Google Scholar 

  55. A. Luzar and D. Chandler, Effect of environment on hydrogen bond dynamics in liquid water, Phys. Rev. Lett. 76(6), 928 (1996)

    Article  ADS  Google Scholar 

  56. F. W. Starr, J. K. Nielsen, and H. E. Stanley, Fast and slow dynamics of hydrogen bonds in liquid water, Phys. Rev. Lett. 82(11), 2294 (1999)

    Article  ADS  Google Scholar 

  57. F. W. Starr, J. K. Nielsen, and H. E. Stanley, Hydrogenbond dynamics for the extended simple point-charge model of water, Phys. Rev. E 62(1), 579 (2000)

    Article  ADS  Google Scholar 

  58. A. Luzar, Resolving the hydrogen bond dynamics conundrum, J. Chem. Phys. 113(23), 10663 (2000)

    Article  ADS  Google Scholar 

  59. A. Luzar, Extent of inter-hydrogen bond correlations in water: Temperature effect, Chem. Phys. 258(2–3), 267 (2000)

    Article  ADS  Google Scholar 

  60. V. Voloshin and Y. I. Naberukhin, Hydrogen bond lifetime distributions in computer simulated water, J. Struct. Chem. 50(1), 78 (2009)

    Article  Google Scholar 

  61. H. Martiniano and N. Galamba, Insights on hydrogenbond lifetimes in liquid and supercooled water, J. Phys. Chem. B 117(50), 16188 (2013)

    Article  Google Scholar 

  62. B. Mukherjee, Microscopic origin of temporal heterogeneities in translational dynamics of liquid water, J. Chem. Phys. 143(5), 054503 (2015)

    Article  ADS  Google Scholar 

  63. O. Conde and J. Teixeira, Hydrogen bond dynamics in water studied by depolarized Rayleigh scattering, J. Phys. 44(4), 525 (1983)

    Article  Google Scholar 

  64. J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and A. J. Dianoux, Experimental determination of the nature of diffusive motions of water molecules at low temperatures, Phys. Rev. A 31(3), 1913 (1985)

    Article  ADS  Google Scholar 

  65. C. Fecko, J. Eaves, J. Loparo, A. Tokmakoff, and P. Geissler, Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water, Science 301 (5640), 1698 (2003)

    Article  ADS  Google Scholar 

  66. D. Laage, Reinterpretation of the liquid water quasielastic neutron scattering spectra based on a nondiffusive jump reorientation mechanism, J. Phys. Chem. B 113(9), 2684 (2009)

    Article  Google Scholar 

  67. R. Kumar, J. Schmidt, and J. Skinner, Hydrogen bonding definitions and dynamics in liquid water, J. Chem. Phys. 126(20), 204107 (2007)

    Article  ADS  Google Scholar 

  68. D. Prada-Gracia, R. Shevchuk, and F. Rao, The quest for self-consistency in hydrogen bond definitions, J. Chem. Phys. 139(8), 084501 (2013)

    Article  ADS  Google Scholar 

  69. A. Ozkanlar, T. Zhou, and A. E. Clark, Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach, J. Chem. Phys. 141(21), 214107 (2014)

    Article  ADS  Google Scholar 

  70. P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L. Å. Näslund, T. K. Hirsch, L. Ojamäe, P. Glatzel, L. G. M. Pettersson, and A. Nilsson, The structure of the first coordination shell in liquid water, Science 304 (5673), 995 (2004)

    Article  ADS  Google Scholar 

  71. R. H. Henchman and S. J. Irudayam, Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water, J. Phys. Chem. B 114(50), 16792 (2010)

    Article  Google Scholar 

  72. J. Jonas, T. DeFries, and D. Wilbur, Molecular motions in compressed liquid water, J. Chem. Phys. 65(2), 582 (1976)

    Article  ADS  Google Scholar 

  73. J. Ropp, C. Lawrence, T. Farrar, and J. Skinner, Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study, J. Am. Chem. Soc. 123(33), 8047 (2001)

    Article  Google Scholar 

  74. E. H. Hardy, A. Zygar, M. D. Zeidler, M. Holz, and F. D. Sacher, Isotope effect on the translational and rotational motion in liquid water and ammonia, J. Chem. Phys. 114(7), 3174 (2001)

    Article  ADS  Google Scholar 

  75. R. Ludwig, F. Weinhold, and T. C. Farrar, Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water, J. Chem. Phys. 103(16), 6941 (1995)

    Article  ADS  Google Scholar 

  76. J. A. Sellberg, C. Huang, T. A. McQueen, N. D. Loh, H. Laksmono, et al., Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature 510 (7505), 381 (2014)

    Article  ADS  Google Scholar 

  77. C. Angell and F. Franks, Water: A Comprehensive Treatise, Vol. 7, New York: Plenum, 1982

    Google Scholar 

  78. H. E. Stanley and O. Mishima, The relationship between liquid, supercooled and glassy water, Nature 396 (6709), 329 (1998)

    Article  ADS  Google Scholar 

  79. L. Liu, S. H. Chen, A. Faraone, C. W. Yen, and C. Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802 (2005)

    Article  ADS  Google Scholar 

  80. S. V. Lishchuk, N. P. Malomuzh, and P. V. Makhlaichuk, Why thermodynamic properties of normal and heavy water are similar to those of argon-like liquids? Phys. Lett. A 374(19–20), 2084 (2010)

    Article  ADS  MATH  Google Scholar 

  81. A. Fisenko, N. Malomuzh, and A. Oleynik, To what extent are thermodynamic properties of water argonlike? Chem. Phys. Lett. 450(4–6), 297 (2008)

    Article  ADS  Google Scholar 

  82. S. Izadi, B. Aguilar, and A. V. Onufriev, Proteinligand electrostatic binding free energies from explicit and implicit solvation, J. Chem. Theory Comput. 11(9), 4450 (2015)

    Article  Google Scholar 

  83. D. Nayar and C. Chakravarty, Sensitivity of local hydration behaviour and conformational preferences of peptides to choice of water model, Phys. Chem. Chem. Phys. 16(21), 10199 (2014)

    Article  Google Scholar 

  84. R. B. Best and J. Mittal, Protein simulations with an optimized water model: Cooperative helix formation and temperature-induced unfolded state collapse, J. Phys. Chem. B 114(46), 14916 (2010)

    Article  Google Scholar 

  85. R. B. Best and J. Mittal, Free-energy landscape of the gb1 hairpin in all-atom explicit solvent simulations with different force fields: Similarities and differences, Proteins 79(4), 1318 (2011)

    Article  Google Scholar 

  86. P. Florová, P. Sklenovský, P. Banáš, and M. Otyepka, Explicit water models affect the specific solvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact, J. Chem. Theory Comput. 6(11), 3569 (2010)

    Article  Google Scholar 

  87. H. E. Stanley, S. V. Buldyrev, G. Franzese, N. Giovambattista, and F. W. Starr, Static and dynamic heterogeneities in water, Philosophical Transactions of the Royal Society of London A 363 (1827), 509 (2005)

    Article  ADS  Google Scholar 

  88. A. Nilsson and L. Pettersson, Perspective on the structure of liquid water, Chem. Phys. 389(1–3), 1 (2011)

    Article  ADS  Google Scholar 

  89. D. Prada-Gracia, R. Shevchuk, P. Hamm, and F. Rao, Towards a microscopic description of the free-energy landscape of water, J. Chem. Phys. 137(14), 144504 (2012)

    Article  ADS  Google Scholar 

  90. G. C. Picasso, D. C. Malaspina, M. A. Carignano, and I. Szleifer, Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water, J. Chem. Phys. 139(4), 044509 (2013)

    Article  ADS  Google Scholar 

  91. J. A. Sellberg, S. Kaya, V. H. Segtnan, C. Chen, T. Tyliszczak, H. Ogasawara, D. Nordlund, L. G. M. Pettersson, and A. Nilsson, Comparison of X-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section, J. Chem. Phys. 141(3), 034507 (2014)

    Article  ADS  Google Scholar 

  92. E. Duboué-Dijon and D. Laage, Characterization of the local structure in liquid water by various order parameters, J. Phys. Chem. B 119(26), 8406 (2015)

    Article  Google Scholar 

  93. R. S. Singh, J. W. Biddle, P. G. Debenedetti, and M. A. Anisimov, Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water, J. Chem. Phys. 144(14), 144504 (2016)

    Article  ADS  Google Scholar 

  94. Y. Xu, N. G. Petrik, R. S. Smith, B. D. Kay, and G. A. Kimmel, Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K, Proc. Natl. Acad. Sci. USA 113(52), 14921 (2016)

    Article  ADS  Google Scholar 

  95. K. A. Jackson, Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials, Wiley-VCH Verlag GmbH & Co. KGaA, 2005

    MATH  Google Scholar 

  96. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926 (1983)

    Article  ADS  Google Scholar 

  97. J. L. F. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123 (23), 234505 (2005)

    Article  ADS  Google Scholar 

  98. M. D. Marzio, G. Camisasca, M. Rovere, and P. Gallo, Fragile-to-strong crossover in supercooled water: A comparison between TIP4P and TIP4P/2005 models, Nuovo Cim. 39(C), 302 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Italian Ministero dell’Istruzione, dell’Università, e della Ricerca (MIUR), by Regione Autonoma della Sardegna (Italy), by Università degli studi di Sassari, and by Istituto Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), which we acknowledge. The “Consorzio COSMOLAB” is also acknowledged for the resources provided within the CyberSar Project. A.V.O. acknowledges support from the US National Institutes of Health (NIH GM076121). We are grateful to Professor G. Franzese for useful discussion of our results and for encouragement in continuing our study. Professor F. Mallamace is gratefully acknowledged for critically reading the manuscript and making useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Onufriev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrieli, A., Sant, M., Izadi, S. et al. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials. Front. Phys. 13, 138203 (2018). https://doi.org/10.1007/s11467-017-0693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0693-7

Keywords

Navigation