Skip to main content
Log in

NMR investigation of degradation processes of ancient and modern paper at different hydration levels

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The degradation process of cellulose-made materials was investigated by means of nuclear magnetic resonance (NMR) spectroscopy, with particular emphasis on the role of water and on the hydration mechanism of cellulose fibrils. To accomplish this, the structure and dynamics of water within ancient and modern samples with different aging histories were investigated. The results mainly indicated that hydrolytic and oxidative reactions provoked the formation of acidic by-products. Furthermore, degradation processes were enhanced by higher amounts of water giving a progressive consumption of the amorphous regions of the cellulose. We propose NMR experiments as a benchmark for characterization of the degradation state of paper, as well as for investigating the effectiveness of restoration treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, P. Baglioni, S. V. Buldyrev, S. H. Chen, and H. E. Stanley, Energy landscape in protein folding and unfolding, Proc. Natl. Acad. Sci. USA 113(12), 3159 (2016)

    Article  ADS  Google Scholar 

  2. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, and G. Dugo, The role of water in protein’s behavior: The two dynamical crossovers studied by NMR and FTIR techniques, Comput. Struct. Biotechnol. J. 13, 33 (2015)

    Article  MATH  Google Scholar 

  3. F. Mallamace, P. Baglioni, C. Corsaro, S. H. Chen, D. Mallamace, C. Vasi, and H. E. Stanley, The influence of water on protein properties, J. Chem. Phys. 141(16), 165104 (2014)

    Article  ADS  Google Scholar 

  4. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, H. E. Stanley, and S. H. Chen, Some thermodynamical aspects of protein hydration water, J. Chem. Phys. 142(21), 215103 (2015)

    Article  ADS  MATH  Google Scholar 

  5. D. Klemm, B. Philipp, T. Heinze, U. Heinze, and W. Wagenknecht, Volume I: Fundamentals and Analytical Methods, Weinheim: WILEY-VCH Verlag GmbH, 1998

    Google Scholar 

  6. A. C. O’Sullivan, The structure slowly unravels, Cellulose 4 (3), 173 (1997)

    Article  Google Scholar 

  7. X. Qiu and S. Hu, “Smart” materials based on cellulose: A review of the preparations, properties, and applications, Materials (Basel) 6 (3), 738 (2013)

    Article  ADS  Google Scholar 

  8. J. Kim, Cellulose as a smart material, in: R. Malcolm Brown and Inder M. Saxena (Eds.), Cellulose: Molecular and Structural Biology, Springer Netherlands, 323–343 (2007)

    Chapter  Google Scholar 

  9. M. Missori, C. Mondelli, M. De Spirito, C. Castellano, M. Bicchieri, R. Schweins, G. Arcovito, M. Papi, and A. C. Castellano, Modifications of the mesoscopic structure of cellulose in paper degradation, Phys. Rev. Lett. 97(23), 238001 (2006)

    Article  ADS  Google Scholar 

  10. M. De Spirito, M. Missori, M. Papi, G. Maulucci, J. Teixeria, C. Castellano, and G. Arcovito, Modifications in solvent clusters embedded along the fibers of a cellulose polymer network cause paper degradation, Phys. Rev. E 77(4), 041801 (2008)

    Article  ADS  Google Scholar 

  11. K. L. Kato and R. E. Cameron, A review of the relationship between thermally-accelerated ageing of paper and hornification, Cellulose 6 (1), 23 (1999)

    Article  Google Scholar 

  12. G. Banik and I. Brückle, Structure and properties of dry and wet paper, in: Paper and Water: A Guide for Conservators, Amsterdam: Elsevier, 81–105 (2011)

    Google Scholar 

  13. L. Teodonio, M. Missori, D. Pawcenis, J. Lojewska, and F. Valle, Nanoscale analysis of degradation processes of cellulose fibers, Micron 91, 75 (2016)

    Article  Google Scholar 

  14. C. Corsaro, D. Mallamace, J. Lojewska, F. Mallamace, L. Pietronero, and M. Missori, Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy, Sci. Rep. 3, 2896 (2013)

    Article  ADS  Google Scholar 

  15. D. Hunter, Papermaking: The History and Technique of an Ancient Craft, New York: Dover Publications, 1978

    Google Scholar 

  16. D. Capitani, A. L. Segre, D. Attanasio, B. Blicharska, B. Focher, and G. Capretti, 1H NMR relaxation study of paper as a system of cellulose and water, Tappi J. 79, 113 (1996)

    Google Scholar 

  17. D. Capitani, N. Proietti, F. Ziarelli, and A. L. Segre, NMR study of water-filled pores in one of the most widely used polymeric material: The paper, Macromolecules 35 (14), 5536 (2002)

  18. C. Federici, P. Mufanò, and M. S. Storace, Ancient paper and its NMR characterization, Sci. Technol. Cult. Herit. 5, 37 (1996)

    Google Scholar 

  19. M. Missori, M. Righini, and A. L. Dupont, Gelatine sizing and discoloration: A comparative study of optical spectra obtained from ancient and artificially aged modern papers, Opt. Commun. 263(2), 289 (2006)

    Article  ADS  Google Scholar 

  20. J. Kolar, Mechanism of autoxidative degradation of cellulose, Restaurator (Copenh.) 18(4), 163 (1997)

    Google Scholar 

  21. S. Zervos, Natural and accelerated ageing of cellulose and paper: A literature review, in: A. Lejeune and T. Deprez (Eds.), Cellulose: Structure and Properties, Derivatives and Industrial Uses, Nova Publishing, 155–203 (2010)

    Google Scholar 

  22. T. jewski, P. Miskowiec, M. Missori, A. Lubanska, L. M. Proniewicz, and J. Lojewska, FTIR and UV/vis as methods for evaluation of oxidative degradation of model paper: DFT approach for carbonyl vibrations, Carbohydr. Polym. 82 (2), 370 (2010)

    Article  Google Scholar 

  23. A. Mosca Conte, A. Knapik, J. Bagniuk, R. Del Sole, J. Lojewska, and M. Missori, Role of cellulose oxidation in the yellowing of ancient paper, Phys. Rev. Lett. 108(15), 158301 (2012)

    Article  ADS  Google Scholar 

  24. T. jewski, T. Sawoszczuk, J. M. Lagan, K. Zieba, A. Baranski, and J. Lojewska, Furfural as a marker of cellulose degradation. A quantitative approach, Appl. Phys. A 100(3), 873 (2010)

    Article  ADS  Google Scholar 

  25. Z. Souguir, A. L. Dupont, and E. R. de la Rie, Formation of brown lines in paper: Characterization of cellulose degradation at the wet-dry interface, Biomacromolecules 9 (9), 2546 (2008)

    Article  Google Scholar 

  26. A. L. Dupont, A. Seemann, and B. Lavédrine, Capillary electrophoresis with electrospray ionization-mass spectrometry for the characterization of degradation products in aged papers, Talanta 89, 301 (2012)

    Article  Google Scholar 

  27. S. Belton, NMR studies of hydration in low water content biopolymer systems, Magn. Reson. Chem. 49, S127 (2011)

    Article  Google Scholar 

  28. C. Violante, L. Teodonio, A. Mosca Conte, O. Pulci, I. Kupchak, and M. Missori, An ab-initio approach to cultural heritage: The case of ancient paper degradation, Phys. Status Solidi B 252(1), 112 (2015)

    Article  ADS  Google Scholar 

  29. M. Missori, Optical spectroscopy of ancient paper and textiles, Nuovo Cimento C 39, 293 (2016)

    ADS  Google Scholar 

  30. M. Missori, O. Pulci, L. Teodonio, C. Violante, I. Kupchak, J. Bagniuk, J. jewska, and A. M. Conte, Optical response of strongly absorbing inhomogeneous materials: Application to paper degradation, Phys. Rev. B 89(5), 054201 (2014)

    Article  ADS  Google Scholar 

  31. A. Mosca Conte, O. Pulci, M. C. Misiti, J. Lojewska, L. Teodonio, C. Violante, and M. Missori, Visual degradation in Leonardo da Vinci’s iconic self-portrait: A nanoscale study, Appl. Phys. Lett. 104(22), 224101 (2014)

    Article  ADS  Google Scholar 

  32. T. Rosenau, A. Potthast, K. Krainz, Y. Yoneda, T. Dietz, Z. P. I. Shields, and A. D. French, Chromophores in cellulosic, VI: First isolation and identification of residuals chromophores from aged cotton linters, Cellulose 18(6), 1623 (2011)

    Article  Google Scholar 

  33. A. Abragam, The Principles of Nuclear Magnetism, London: Oxford University Press, 1961

    Google Scholar 

  34. S. Moestue, B. Sitter, T. Frost Bathen, M. B. Tessem, and I. S. Gribbestad, HR MAS MR spectroscopy in metabolic characterization of cancer, Curr. Top. Med. Chem. 11 (1), 2 (2011)

    Article  Google Scholar 

  35. A. Torre, F. Trischitta, C. Corsaro, D. Mallamace, and C. Faggio, Digestive cells from Mytilus galloprovincialis show a partial regulatory volume decrease following acute hypotonic stress through mechanisms involving inorganic ions, Cell Biochem. Funct. 31(6), 489 (2013)

    Article  Google Scholar 

  36. O. Beckonert, M. Coen, H. C. Keun, Y. Wang, T. M. D. Ebbels, E. Holmes, J. C. Lindon, and J. K. Nicholson, High-resolution magic-anglespinning NMR spectroscopy for metabolic profiling of intact tissues, Nat. Protoc. 5(6), 1019 (2010)

    Article  Google Scholar 

  37. C. Corsaro, D. Mallamace, S. Vasi, V. Ferrantelli, G. Dugo, and N. Cicero, 1H HR-MAS NMR spectroscopy and the metabolite determination of typical foods in mediterranean diet, J. Anal. Methods Chem. 2015, 1 (2015)

    Article  Google Scholar 

  38. N. Cicero, C. Corsaro, A. Salvo, S. Vasi, S. V. Giofré, V. Ferrantelli, V. Di Stefano, D. Mallamace, and G. Dugo, The metabolic profile of lemon juice by proton HR-MAS NMR: The case of the PGI Interdonato Lemon of Messina, Nat. Prod. Res. 29(20), 1894 (2015)

    Article  Google Scholar 

  39. C. Corsaro, D. Mallamace, S. Vasi, L. Pietronero, F. Mallamace, and M. Missori, The role of water in the degradation process of paper using 1H HR-MAS NMR spectroscopy, Phys. Chem. Chem. Phys. 18(48), 33335 (2016)

    Article  Google Scholar 

  40. D. Mallamace, S. Vasi, M. Missori, and C. Corsaro, New insight into hydration and aging mechanisms of paper by the line shape analysis of proton NMR spectra, Il Nuovo Cimento C 39, 309 (2016)

    ADS  Google Scholar 

  41. J. H. Chen and S. Singer, High-resolution magic-anglespinning NMR spectroscopy, in: J. C. Lindon, J. K. Nickolson, and E. Holmes (Eds.), The Handbook of Metabolonomics and Metabolomics, New York: Elsevier, 113–147 (2007)

    Chapter  Google Scholar 

  42. J. C. Lindon, E. Holmes, and J. K. Nicholson, Metabolonomics in pharmacheutical R&D, FEBS J. 274(5), 1140 (2007)

    Article  Google Scholar 

  43. E. R. Andrew, A. Bradbury, and R. G. Eades, Removal of bipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation, Nature 183 (4678), 1802 (1959)

    Article  ADS  Google Scholar 

  44. B. Blicharska and M. Kluza, NMR relaxation in cellulose pulp, Colloids Surf. A Physicochem. Eng. Asp. 115, 137 (1996)

    Article  Google Scholar 

  45. D. Topgaard and O. Söderman, Changes of cellulose fiber wall structure during drying investigated using NMR self-diffusion and relaxation experiments, Cellulose 9 (2), 139 (2002)

    Article  Google Scholar 

  46. N. Matubayasi, C. Wakai, and M. Nakahara, NMR study of water structure in super- and subcritical conditions, Phys. Rev. Lett. 78 (13), 2573 (1997)

    Article  ADS  Google Scholar 

  47. K. Modig, B. G. Pfrommer, and B. Halle, Temperaturedependent hydrogen-bond geometry in liquid water, Phys. Rev. Lett. 90(7), 075502 (2003)

    Article  ADS  Google Scholar 

  48. D. Sebastiani and M. Parrinello, Ab-initio study of NMR chemical shifts of water under normal and supercritical conditions, ChemPhysChem 3(8), 675 (2002)

    Article  Google Scholar 

  49. F. Mallamace, C. Corsaro, M. Broccio, C. Branca, N. Gonzalez-Segredo, J. Spooren, S. H. Chen, and H. E. Stanley, NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water, Proc. Natl. Acad. Sci. USA 105 (35), 12725 (2008)

    Article  ADS  Google Scholar 

  50. C. Corsaro, J. Spooren, C. Branca, N. Leone, M. Broccio, C. Kim, S. H. Chen, H. E. Stanley, and F. Mallamace, Clustering dynamics in water/methanol mixtures: A nuclear magnetic resonance study at 205 K < T < 295 K, J. Phys. Chem. B 112(34), 10449 (2008)

    Article  Google Scholar 

  51. M. F. Froix and R. Nelson, The interaction of water with cellulose from nuclear magnetic resonance relaxation times, Macromolecules 8(6), 726 (1975)

    Article  ADS  Google Scholar 

  52. D. Majolino, C. Corsaro, V. Crupi, V. Venuti, and U. Wanderlingh, Water diffusion in nanoporous glass: An NMR study at different hydration levels, J. Phys. Chem. B 112(13), 3927 (2008)

    Article  Google Scholar 

  53. M. Paci, C. Federici, D. Capitani, N. Perenze, and A. L. Segre, NMR study of paper, Carbohydr. Polym. 26 (4), 289 (1995)

    Article  Google Scholar 

  54. S. Hayashi and E. Akiba, Nuclear spin-lattice relaxation mechanisms in kaolinite confirmed by magic-angle spinning, Solid State Nucl. Magn. Reson. 4(6), 331 (1995)

    Article  Google Scholar 

  55. E. Scarpellini, M. Ortolani, A. Nucara, L. Baldassarre, M. Missori, R. Fastampa, and R. Caminiti, Stabilization of the tensile strength of aged cellulose paper by Cholinium-Amino acid ionic liquid treatment, J. Phys. Chem. C 120(42), 24088 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Consiglio Nazionale delle Ricerche and the Istituto Centrale per il Restauro e la Conservazione del Patrimonio Archivistico e Librario (Roma, Italy) for their support. J. Łojewska is kindly acknowledged for providing the P2 samples. D.M.’s activity was carried out within the framework of the NANORESTART project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 646063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Mallamace.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallamace, D., Vasi, S., Missori, M. et al. NMR investigation of degradation processes of ancient and modern paper at different hydration levels. Front. Phys. 13, 138202 (2018). https://doi.org/10.1007/s11467-017-0686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0686-6

Keywords

Navigation