Skip to main content
Log in

Contrasting microscopic interactions determine the properties of water/methanol solutions

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Herein we study the different microscopic interactions occurring in water/methanol solutions at different methanol molar fractions, using NMR spctroscopy. Temperature was found to determine which interaction dominates. It was found that the mixing between water and methanol is non-ideal because of the presence of interactions like hydrophobicity and hydrophilicity. These results indicate that the competition between hydrophilic and hydrophobic interactions is different in different thermal regions, and that the physical properties of the solution are determined by the character of the solution itself, which in turn depends on the mole fraction of methanol and on the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J. E. Rubensson, D. K. Shuh, H. Ågren, and J. Nordgren, Molecular structure of alcohol–water mixtures, Phys. Rev. Lett. 91(15), 157401 (2003)

    Article  ADS  Google Scholar 

  2. T. Yamaguchi, K. Hidaka, and A. K. Soper, The structure of liquid methanol revisited: A neutron diffraction experiment at 80 C and +25C, Mol. Phys. 96(8), 1159 (1999)

    Article  ADS  Google Scholar 

  3. R. Ludwig, Water: From clusters to the bulk, Angew. Chem. Int. Ed. 40(10), 1808 (2001)

    Article  Google Scholar 

  4. A. K. Soper, L. Dougan, J. Crain, and J. L. Finney, Excess entropy in alcohol–water solutions: A simple clustering explanation, J. Phys. Chem. B 110(8), 3472 (2006)

    Article  Google Scholar 

  5. Y. Zhong, G. L. Warren, and S. Patel, Thermodynamic and structural properties of methanol–water solutions using non-additive interaction models, J. Comput. Chem. 29(7), 1142 (2008)

    Article  Google Scholar 

  6. F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, S. Vasi, and H. E. Stanley, Dynamical properties of watermethanol solutions, J. Chem. Phys. 144(6), 064506 (2016)

    Article  ADS  MATH  Google Scholar 

  7. R. K. Lam, J. W. Smith, and R. J. Saykally, Communication: Hydrogen bonding interactions in water–alcohol mixtures from X-ray absorption spectroscopy, J. Chem. Phys. 144(19), 191103 (2016)

    Article  ADS  Google Scholar 

  8. F. Mallamace, P. Baglioni, C. Corsaro, S. H. Chen, D. Mallamace, C. Vasi, and H. E. Stanley, The influence of water on protein properties, J. Chem. Phys. 141(16), 165104 (2014)

    Article  ADS  Google Scholar 

  9. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, H. E. Stanley, and S. H. Chen, Some thermodynamical aspects of protein hydration water, J. Chem. Phys. 142(21), 215103 (2015)

    Article  ADS  MATH  Google Scholar 

  10. R. E. Gibson, The compressions and specific volumes of aqueous solutions of resorcinol and methanol at 25? and the behavior of water in these solutions, J. Am. Chem. Soc. 57(9), 1551 (1935)

    Article  Google Scholar 

  11. H. S. Frank and M. W. Evans, Free Volume and Entropy in Condensed Systems III. Entropy in binary liquid mixtures; Partial molal entropy in dilute solutions; Structure and thermodynamics in aqueous electrolytes, J. Chem. Phys. 13(11), 507 (1945)

    Article  ADS  Google Scholar 

  12. Y. Koga, K. Nishikawa, and P. Westh, “Icebergs” or no “icebergs” in aqueous alcohols: Compositiondependent mixing schemes, J. Phys. Chem. A 108 (17), 3873 (2004)

    Article  Google Scholar 

  13. C. Corsaro, R. Maisano, D. Mallamace, and G. Dugo, 1H NMR study of water/methanol solutions as a function of temperature and concentration, Physica A 392 (4), 596 (2013)

    Article  ADS  Google Scholar 

  14. W. Kauzmann, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14, 1 (1959)

    Article  Google Scholar 

  15. C. Corsaro, J. Spooren, C. Branca, N. Leone, M. Broccio, C. Kim, S. H. Chen, H. E. Stanley, and F. Mallamace, Clustering dynamics in water/methanol mixtures: A nuclear magnetic resonance study at 205 K < T < 295 K, J. Phys. Chem. B 112(34), 10449 (2008)

    Article  Google Scholar 

  16. S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, and A. K. Soper, Molecular segregation observed in a concentrated alcohol water solution, Nature 416 (6883), 829 (2002)

    Article  ADS  Google Scholar 

  17. L. Dougan, R. Hargreaves, S. P. Bates, J. L. Finney, V. Réat, A. K. Soper, and J. Crain, Segregation in aqueous methanol enhanced by cooling and compression, J. Chem. Phys. 122(17), 174514 (2005)

    Article  ADS  Google Scholar 

  18. M. Požar, A. Kerasidou, B. Lovrincevic, L. Zoranic, M. Mijakovic, T. Primorac, F. Sokolic, V. Teboul, and A. Perera, The microscopic structure of cold aqueous methanol mixtures, J. Chem. Phys. 145(14), 144502 (2016)

    Article  ADS  Google Scholar 

  19. L. Dougan, S. P. Bates, R. Hargreaves, J. P. Fox, J. Crain, J. L. Finney, V. Reat, and A. K. Soper, Methanol-water solutions: A bi-percolating liquid mixture, J. Chem. Phys. 121(13), 6456 (2004)

    Article  ADS  Google Scholar 

  20. M. Nagasaka, K. Mochizuki, V. Leloup, and N. Kosugi, Local structures of methanol-water binary solutions studied by soft X-ray absorption spectroscopy, J. Phys. Chem. B 118(16), 4388 (2014)

    Article  Google Scholar 

  21. H. Schott, Hydration of primary alcohols, J. Chem. Eng. Data 14(2), 237 (1969)

    Article  Google Scholar 

  22. Z. J. Derlacki, A. J. Easteal, A. V. J. Edge, L. A. Woolf, and Z. J. Roksandic, Diffusion coefficients of methanol and water and the mutual diffusion coefficient in methanol–water solutions at 278 and 298 K, J. Phys. Chem. 89(24), 5318 (1985)

    Article  Google Scholar 

  23. S. Z. Mikhail and W. R. Kimel, Densities and viscosities of methanol–water mixtures, J. Chem. Eng. Data 6(4), 533 (1961)

    Article  Google Scholar 

  24. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, and H. E. Stanley, Thermodynamic properties of bulk and confined water, J. Chem. Phys. 141, 18C504 (2014)

    Article  MATH  Google Scholar 

  25. R. S. Singh, J. W. Biddle, P. G. Debenedetti, and M. A. Anisimov, Two-state thermodynamics and the possibility of a liquid–liquid phase transition in supercooled TIP4P/2005 water, J. Chem. Phys. 144(14), 144504 (2016)

    Article  ADS  Google Scholar 

  26. Y. Ni and J. L. Skinner, Evidence for a liquid–liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line, J. Chem. Phys. 144(21), 214501 (2016)

    Article  ADS  Google Scholar 

  27. F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S. H. Chen, and H. E. Stanley, Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. USA 107(52), 22457 (2010)

    Article  ADS  Google Scholar 

  28. F. Mallamace, C. Corsaro, H. E. Stanley, D. Mallamace, and S. H. Chen, The dynamical crossover in attractive colloidal systems, J. Chem. Phys. 139(21), 214502 (2013)

    Article  ADS  Google Scholar 

  29. F. Mallamace, C. Corsaro, and H. E. Stanley, A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993 (2012)

  30. P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, and L. G. M. Pettersson, Water: A tale of two liquids, Chem. Rev. 116(13), 7463 (2016)

    Article  Google Scholar 

  31. F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water, Faraday Discuss. 167, 95 (2013)

    Article  ADS  MATH  Google Scholar 

  32. L. Xu, P. Kumar, S. V. Buldyrev, S. H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition, Proc. Natl. Acad. Sci. USA 102(46), 16558 (2005)

    Article  ADS  Google Scholar 

  33. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, P. Baglioni, S. V. Buldyrev, S. H. Chen, and H. E. Stanley, Energy landscape in protein folding and unfolding, Proc. Natl. Acad. Sci. USA 113(12), 3159 (2016)

    Article  ADS  Google Scholar 

  34. N. Bloembergen, E. M. Purcell, and R. V. Pound, Relaxation effects in nuclear magnetic resonance absorption, Phys. Rev. 73(7), 679 (1948)

    Article  ADS  Google Scholar 

  35. W. R. Carper, Direct determination of quadrupolar and dipolar NMR correlation times from spin-lattice and spin–spin relaxation rates, Concepts in Magnetic Resonance Part A 11(1), 51 (1999)

    Article  Google Scholar 

  36. A. Yilmaz, M. Z. Köylü, and H. Budak, Estimation of value in proton NMR relaxation times of dibenzo diaza 18-crown-6 ether derivative in solution, Chem. Phys. Lett. 427(4–6), 346 (2006)

    Article  ADS  Google Scholar 

  37. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, and H. E. Stanley, NMR spectroscopy study of local correlations in water, J. Chem. Phys. 145 (21), 214503 (2016)

    Article  ADS  Google Scholar 

  38. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, S.- H. Chen, and H. E. Stanley (submitted)

  39. S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, and L. Xu, Confined water as model of supercooled water, Chem. Rev. 116(13), 7608 (2016)

    Article  Google Scholar 

  40. H. J. Wang, X. K. Xi, A. Kleinhammes, and Y. Wu, Temperature-induced hydrophobic-hydrophilic transition observed by water adsorption, Science 322 (5898), 80 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.M.’s activity is carried out within the framework of the NANORESTART project that has received funding from the European Union’s Horizon 2020 research and innovation programme, under grant agreement No 646063. The research at Boston University was supported by NSF Grants PHY- 1505000, CMMI-1125290, and CHE-1213217, and by DTRA Grant HDTRA1-14-1-0017 and DOE Contract DE-AC07-05Id14517. The research at Massachusetts Institute of Technology was funded by the US Department of Energy Grant DE-FG02-90ER45429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Corsaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corsaro, C., Mallamace, F., Vasi, S. et al. Contrasting microscopic interactions determine the properties of water/methanol solutions. Front. Phys. 13, 138201 (2018). https://doi.org/10.1007/s11467-017-0685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0685-7

Keywords

Navigation