Advertisement

Frontiers of Physics

, 12:120508 | Cite as

Synchronization of coupled metronomes on two layers

  • Jing Zhang
  • Yi-Zhen YuEmail author
  • Xin-Gang WangEmail author
Research article
Part of the following topical collections:
  1. Soft-Matter Physics and Complex Systems

Abstract

Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

Keywords

coupled oscillators experimental study synchronization pattern 

PACS numbers

05.45.Xt 05.45.-a 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11375109, and also by the Fundamental Research Funds for the Central Universities under Grant No. GK201601001.

References

  1. 1.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Berlin: Springer-Verlag, 1984CrossRefzbMATHGoogle Scholar
  2. 2.
    A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge: Cambridge University Press, 2001CrossRefzbMATHGoogle Scholar
  3. 3.
    S. Strogatz, Sync: The Emerging Science of Spontaneous Order, New York: Hyperion, 2003Google Scholar
  4. 4.
    C. Huygens, [Letter to de Sluse]. Oeuveres Completes de Christian Huygens. (Letters; No. 133 of 24 February 1665, No. 1335 of 26 February 1665, No. 1345 of 6 March 1665), Societe Hollandaise DesSciences, Martinus Nijhor, La Haye, 1665Google Scholar
  5. 5.
    M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, Synchronization of clocks, Phys. Rep. 517(1–2), 1 (2012)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep. 366(1–2), 1 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4–5), 175 (2006)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. S. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Q. Wang, A. Pumir, N. B. Garnier, and Z. H. Liu, Explosive synchronization enhances selectivity: Example of the cochlea, Front. Phys. 12(5), 128901 (2017)CrossRefGoogle Scholar
  10. 10.
    S. F. Ma, H. J. Bi, Y. Zou, Z. H. Liu, and S. G. Guang, Shuttle-run synchronization in mobile ad hoc networks, Front. Phys. 10(3), 100505 (2015)Google Scholar
  11. 11.
    M. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld, Huygens’s clocks, Proc. R. Soc. Lond. A 458(2019), 563 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. Pantaleone, Synchronization of metronomes, Am. J. Phys. 70(10), 992 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Wu, N. Wang, L. Li, and J. Xiao, Anti-phase synchronization of two coupled mechanical metronomes, Chaos 22(2), 023146 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Y. Wu, Z. Song, W. Liu, J. Jia, and J. Xiao, Experimental and numerical study on the basin stability of the coupled metronomes, Eur. Phys. J. Spec. Top. 223(4), 697 (2014)CrossRefGoogle Scholar
  15. 15.
    Z. Song, Y. Wu, W. Liu, and J. Xiao, Experimental study of the irrational phase synchronization of coupled nonidentical mechanical metronomes, PLoS One 10, 0118986 (2015)Google Scholar
  16. 16.
    Q. Hu, W. Liu, H. Yang, J. Xiao, and X. Qian, Experimental study on synchronization of three coupled mechanical metronomes, Eur. J. Phys. 34(2), 291 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Jia, Z. Song, W. Liu, J. Kurths, and J. Xiao, Experimental study of the triplet synchronization of coupled nonidentical mechanical metronomes, Sci. Rep. 5, 17008 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    B. Kralemann, A. Pikovsky, and M. Rosenblum, Detecting triplet locking by triplet synchronization indices, Phys. Rev. E 87(5), 052904 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, Clustering and synchronization of n Huygens’ clocks, Physica A 388(24), 5013 (2009)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    H. Ulrichs, A. Mann, and U. Parlitz, Synchronization and chaotic dynamics of coupled mechanical metronomes, Chaos 19(4), 043120 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    E. A. Martens, S. Thutupalli, A. Fourriere, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA 110(26), 10563 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    S. Boda, S. Ujv’ari, A. Tunyagi, and Z. N’eda, Kuramoto-type phase transition with metronomes, Eur. J. Phys. 34(6), 1451 (2013)CrossRefGoogle Scholar
  23. 23.
    T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, and Y. Maistrenko, Imperfect chimera states for coupled pendulums, Sci. Rep. 4, 6379 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M. Hasler, Yu. Maistrenko, and O. Popovych, Simple example of partial synchronizaiton of chaotic systems, Phys. Rev. E 58(5), 6843 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Zhang, G. Hu, H. A. Cerdeira, S. Chen, T. Braun, and Y. Yao, Partial synchronization and spontaneous spatial ordering in coupled chaotic systems, Phys. Rev. E 63(2), 026211 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    C. Fu, Z. Deng, L. Huang, and X. G. Wang, Topological control of synchronous patterns in systems of networked chaotic oscillators, Phys. Rev. E 87(3), 032909 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    C. Fu, W. Lin, L. Huang, and X. G. Wang, Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization, Phys. Rev. E 89(5), 052908 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nat. Commun. 5, 4079 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    T. Nishikawa and A. E. Motter, Symmetric states requiring system asymmetry, Phys. Rev. Lett. 117(11), 114101 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    M. Zhan, G. Hu, Y. Zhang, and D. He, Generalized splay state in coupled chaotic oscillators induced by weak mutual resonant interactions, Phys. Rev. Lett. 86(8), 1510 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    X. G. Wang, M. Zhan, C. H. Lai, and G. Hu, Measure synchronization in coupled j4 Hamiltonian systems, Phys. Rev. E 67(6), 066215 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    K. Czołczyński, P. Perlikowski, A. Stefańki, and T. Kapitaniak, Clustering of non-identical clocks, Prog. Theor. Phys. 125(3), 473 (2011)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    X. G. Wang, Y. C. Lai, and C. H. Lai, Enhancing synchronization based on complex gradient networks, Phys. Rev. E 75(5), 056205 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    X. G. Wang, L. Huang, Y. C. Lai, and C. H. Lai, Optimization of synchronization in gradient clustered networks, Phys. Rev. E 76(5), 056113 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations