Skip to main content
Log in

Spectral blueshift as a three-dimensional structure-ordering process

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The transmission spectra of a TiO2-silicone oil suspension in an increasing external electric field are studied. As the electric field increases, the structure of the suspension changes from a disordered one to an ordered one. Interestingly, the transmission spectra blueshift in this structure-ordering process. Furthermore, the relative transmission spectra exhibit Fano-like asymmetric line shapes. The deviation ratio of each asymmetric line shape increases monotonously as the disorder of the suspension decreases. We suggest that this blueshift phenomenon can be used to characterize the disorder strength of three-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge: Academic Press, 1999

    Book  MATH  Google Scholar 

  2. Q. Gong and X. Hu, Photonic Crystals: Principles and Applications, Pan Standford: Academic Press, 2014

    Google Scholar 

  3. J. Y. Huang and L. W. Zhou, Exceptional enhancement of localization effect in a one-dimensional multilayer system with destructive weak disorder strength, Opt. Lett. 36(7), 1305 (2011)

    Article  ADS  Google Scholar 

  4. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Localization of light in a disordered medium, Nature 390(6661), 671 (1997)

    Article  ADS  Google Scholar 

  5. S. Zhang, J. Park, V. Milner, and A. Z. Genack, Photon delocalization transition in dimensional crossover in layered media, Phys. Rev. Lett. 101(18), 183901 (2008)

    Article  ADS  Google Scholar 

  6. A. A. Fernández-Marín, J. A. Méndez-Bermúdez, J. Carbonell, F. Cervera, J. Sánchez-Dehesa, and V. A. Gopar, Beyond Anderson localization in 1D: Anomalous localization of microwaves in random waveguides, Phys. Rev. Lett. 113(23), 233901 (2014)

    Article  ADS  Google Scholar 

  7. L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, Disorder-enhanced transport in photonic quasi-crystals, Science 332(6037), 1541 (2011)

    Article  ADS  Google Scholar 

  8. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Transport and Anderson localization in disordered twodimensional photonic lattices, Nature 446(7131), 52 (2007)

    Article  ADS  Google Scholar 

  9. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Anderson localization and nonlinearity in one-dimensional disordered photonic lattices, Phys. Rev. Lett. 100(1), 013906 (2008)

    Article  ADS  Google Scholar 

  10. Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett. 103(1), 013901 (2009)

    Article  ADS  Google Scholar 

  11. P. Ni, P. Zhang, X. Qi, J. Yang, Z. Chen, and W. Man, Light localization and nonlinear beam transmission in specular amorphous photonic lattices, Opt. Express 24(3), 2420 (2016)

    Article  ADS  Google Scholar 

  12. P. Sebbah, B. Hu, J. M. Klosner, and A. Z. Genack, Extended quasimodes within nominally localized random waveguides, Phys. Rev. Lett. 96(18), 183902 (2006)

    Article  ADS  Google Scholar 

  13. K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, Localized modes in open onedimensional dissipative random systems, Phys. Rev. Lett. 97(24), 243904 (2006)

    Article  ADS  Google Scholar 

  14. I. V. Shadrivov, K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, and Y. S. Kivshar, Bistability of Anderson localized states in nonlinear random media, Phys. Rev. Lett. 104(12), 123902 (2010)

    Article  ADS  Google Scholar 

  15. J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, Optical necklace states in Anderson localized 1D systems, Phys. Rev. Lett. 94(11), 113903 (2005)

    Article  ADS  Google Scholar 

  16. M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, Observation of the critical regime near Anderson localization of light, Phys. Rev. Lett. 96(6), 063904 (2006)

    Article  ADS  Google Scholar 

  17. J. Wang and A. Z. Genack, Transport through modes in random media, Nature 471(7338), 345 (2011)

    Article  ADS  Google Scholar 

  18. T. Sperling, W. B?hrer, C. M. Aegerter, and G. Maret, Direct determination of the transition to localization of light in three dimensions, Nat. Photonics 7(1), 48 (2012)

    Article  ADS  Google Scholar 

  19. A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, Fano interference governs wave transport in disordered systems, Nat. Commun. 3, 914 (2012)

    Article  ADS  Google Scholar 

  20. J. Topolancik, B. Ilic, and F. Vollmer, Experimental observation of strong photon localization in disordered photonic crystal waveguides, Phys. Rev. Lett. 99(25), 253901 (2007)

    Article  ADS  Google Scholar 

  21. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials, Phys. Rev. B 61(20), 13458 (2000)

    Article  ADS  Google Scholar 

  22. J. Y. Huang, B. Q. Dong, and L. W. Zhou, Non-uniform ensembles of diverse resonances in one-dimensional layered media, Opt. Lett. 36(13), 2477 (2011)

    Article  ADS  Google Scholar 

  23. Z. Shi, M. Davy, and A. Z. Genack, Statistics and control of waves in disordered media, Opt. Express 23(9), 12293 (2015)

    Article  ADS  Google Scholar 

  24. P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)

    Article  ADS  Google Scholar 

  25. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Random laser action in semiconductor powder, Phys. Rev. Lett. 82(11), 2278 (1999)

    Article  ADS  Google Scholar 

  26. C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, Exceptional reduction of the diffusion constant in partially disordered photonic crystals, Phys. Rev. Lett. 101(12), 123901 (2008)

    Article  ADS  Google Scholar 

  27. M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, Fano resonance between Mie and Bragg scattering in phononic crystals, Phys. Rev. Lett. 103(2), 023901 (2009)

    Article  ADS  Google Scholar 

  28. U. Fano, Effect of configuration interaction on intensities and phase shifts, Phys. Rev. 124(6), 1866 (1961)

    Article  ADS  MATH  Google Scholar 

  29. M. F. Smith, K. Setwong, R. Tongpool, D. Onkaw, S. Na-phattalung, S. Limpijumnong, and S. Rujirawat, Identification of bulk and surface sulfur impurities in TiO2 by synchrotron X-ray absorption near edge structure, Appl. Phys. Lett. 91(14), 142107 (2007)

    Article  ADS  Google Scholar 

  30. W. Wen, X. Huang, and P. Sheng, Electrorheological fluids: Structures and mechanisms, Soft Matter 4(2), 200 (2008)

    Article  ADS  Google Scholar 

  31. T. Chen, R. N. Zitter, and R. Tao, Laser diffraction determination of the crystalline structure of an electrorheological fluid, Phys. Rev. Lett. 68(16), 2555 (1992)

    Article  ADS  Google Scholar 

  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983, page 118

    Google Scholar 

  33. W. J. Tian, M. K. Liu, and J. P. Huang, Origin of the reduced attracting force between a rotating dielectric particle and a stationary one, Phys. Rev. E 75(2), 021401 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Biqin Dong, Jian Chang, Haiwei Yin, Yafeng Zhang, Yiwen Zhang, Xiangying Shen, Yanwen Tan, and Jian Zi for their fruitful helps and discussions. The financial support of the Science and Technology Commission of Shanghai Municipality (Grant No. 16ZR1445100) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Ying Huang or Ji-Ping Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JY., Wu, ZH. & Huang, JP. Spectral blueshift as a three-dimensional structure-ordering process. Front. Phys. 12, 124205 (2017). https://doi.org/10.1007/s11467-017-0673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0673-y

Keywords

Navigation