Skip to main content
Log in

A new unified theory of electromagnetic and gravitational interactions

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξR b a A a = -4πJ b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a, R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein–Maxwell equation by a curvature-coupled term ξR b a A a, whose presence addresses the problem of incompatibility of the Einstein–Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza–Klein theory and its variants in which the Einstein–Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Zur allgemeinen Relativitätstheorie, Seitsber. Preuss. Akad. Wiss. Berlin, 1915, p. 778

  2. A. Einstein, Die Feldgleichungen der Gravitation, Seitsber. Preuss. Akad. Wiss. Berlin, 1915, p. 844

  3. H. F. M. Goenner, On the history of unified field theories, Living Rev. Relativity 7, 2 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. A. Einstein, A generalized theory of gravitation, Rev. Mod. Phys. 20, 35 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Einstein, The Meaning of Relativity, 5th Ed., Including the Relativistic Theory of the Non-Symmetric Field, Princeton University Press, Princeton, 1955

    Google Scholar 

  6. H. Weyl, Gravitation und Elektrizität, Seitsber. Preuss. Akad. Wiss. Berlin, 1918, p. 465

  7. A. Eddington, A generalisation of Weyl’s theory of the electromagnetic and gravitational fields, Proc. R. Soc. Ser. A 99, 104 (1921)

    Article  ADS  MATH  Google Scholar 

  8. E. Schrödinger, The final affine field laws I, Proc. Royal Irish Acad. A 51, 163 (1947)

    MathSciNet  Google Scholar 

  9. G. Nordström, Über die Moglichkeit, das electromagnetische Feld und das Gravitationsfeld zu vereinigen, Phys. Z. 15, 504 (1914)

    MATH  Google Scholar 

  10. T. Kaluza, Zum Unitätsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss, 1921, p. 966

  11. O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys. 37, 895 (1926)

    Article  ADS  MATH  Google Scholar 

  12. O. Klein, The atomicity of electricity as a quantum theory law, Nature 118, 516 (1926)

    Article  ADS  Google Scholar 

  13. D. Bailin and A. Love, Kaluza–Klein theories, Rep. Prog. Phys. 50, 1087 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. J. M. Overduin and P. S. Wesson, Kaluza–Klein gravity, Phys. Rep. 283, 303 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  16. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, New dimensions at a millimeter to a fermi and superstrings at a TeV, Phys. Lett. B 436, 257 (1998)

    Article  ADS  Google Scholar 

  17. L. Randall and R. Sundrum, Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83, 3370 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83, 4690 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. R. M. Wald, General Relativity, University of Chicago Press, Chicago, 1984

    Book  MATH  Google Scholar 

  20. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1973

    Book  MATH  Google Scholar 

  21. S. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Addison-Wesley, New York, 2003

    Google Scholar 

  22. L.-X. Li, Electrodynamics on cosmological scales, Gen. Relativ. Gravit. 48, 28 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York, 1972

    Google Scholar 

  24. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, New York, 1973

    Google Scholar 

  25. A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Ann. Phys. 354, 769 (1916)

    Article  MATH  Google Scholar 

  26. R. L. Arnowitt, S. Deser, and C. W. Misner, in: Gravitation: An Introduction to Current Research, Ed. L. Witten, John Wiley and Sons, Inc., New York, 1962

  27. According to Campbell’s theorem, any analytic n- dimensional Riemannian space can be locally embedded in an (n+1)-dimensional Ricci-flat space 43, 44. Hence, consideration of an n-dimensional spacetime embedded in an (n+1)-dimensional spacetime does not seem to put much constraint on the properties of the n-dimensional spacetime.

  28. In this paper tensor space on a manifoldMwill generally be denoted by T (M), regardless of the type of tensor (scalar, vector, dual vector, or tensor of any type).

  29. The Lagrangian in Eq. (65) does not contain any derivatives of N so we do not interpret N as a matter field.

  30. Note that all abab; 2, abab, 2, ab, and are proportional to N -2.

  31. E. C. G. Stueckelberg, Théorie de la radiation de photon de masse arbitrairement petite, Helv. Phys. Acta 30, 209 (1957)

    MATH  MathSciNet  Google Scholar 

  32. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Westview Press, New York, 1995

    Google Scholar 

  33. C. Liang and B. Zhou, An Introduction to Differential Geometry and General Relativity, Vol. I, Science Press, Beijing, 2006

    Google Scholar 

  34. J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 1987

    MATH  Google Scholar 

  35. G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results, Astrophys. J. Supp. 208, 19 (2013)

    Article  ADS  Google Scholar 

  36. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, et al. (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters, arXiv: 1502.01589, 2015

    Google Scholar 

  37. The idea of interpreting the extra geometric terms in a four-dimensional Einstein field equation derived from 5D gravity as representing induced matter in a fourdimensional spacetime has been extensively investigated by Wesson and his collaborators (see 14, 45 and references therein). They proposed that the extra geometric terms are the stress-energy tensors of the induced matter and regarded the fifth dimension as being associated with the rest mass of particles instead of a real space dimension. However, in their theory, they did not derive the field equations of matter and electromagnetic fields.

  38. T. Shiromizu, K. Maeda, and M. Sasaki, The Einstein equations on the 3-brane world, Phys. Rev. D 62, 024012 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. R. M. Wald, Black hole in a uniform magnetic field, Phys. Rev. D 10, 1680 (1974)

    Article  ADS  Google Scholar 

  40. Strictly, when an electromagnetic field is present the spacetime cannot be exactly Ricci-flat, since the stressenergy tensor of the electromagnetic field will make Rab = 0. However, if the electromagnetic field is weak its effect on the spacetime curvature can be ignored and the spacetime can be approximately Ricci-flat if the mass density of other matter is sufficiently low.

  41. M. S. Turner and L. M. Widrow, Inflation-produced, large-scale magnetic fields, Phys. Rev. D 37, 2743 (1988)

    Article  Google Scholar 

  42. A. S. Goldhaber and M. M. Nieto, Photon and graviton mass limits, Rev. Mod. Phys. 82, 939 (2010)

    Article  ADS  Google Scholar 

  43. J. E. Campbell, A Course of Differential Geometry, Clarendon Press, Oxford, 1926

    Google Scholar 

  44. C. Romero, R. Tavakol, and R. Zalaletdinov, The embedding of general relativity in five dimensions, Gen. Relativ. Gravit. 28, 365, 1996

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. P. S. Wesson, The status of modern five-dimensional gravity (A short review: Why physics needs the fifth dimension), Int. J. Mod. Phys. D 24, 1530001 (2015)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LX. A new unified theory of electromagnetic and gravitational interactions. Front. Phys. 11, 110402 (2016). https://doi.org/10.1007/s11467-016-0588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0588-z

Keywords

Navigation