Skip to main content
Log in

Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We review recent our results in the fundamental study of surface-enhanced Raman scattering (SERS) with emphasis on experiments that attempted to identify the enhancement and blinking mechanism using single Ag nanoparticle dimers attached to dye molecules. These results are quantitatively discussed in the framework of electromagnetic mechanism. We also review recent our results in basic SERS applications for biological sensing regarding detections of cell surface molecules and distinction of disease marker molecules under single cell and single molecule level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fleischman, P. J. Hendra, and A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett., 1974, 26(2): 123

    ADS  Google Scholar 

  2. M. G. Albrecht and J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc., 1977, 99(15): 5215

    Article  Google Scholar 

  3. D. L. Jeanmaire and R. P. V. Duyne, Surface raman spectroelectrochemistry, J. Electroanal. Chem., 1977, 84(1): 1

    Article  Google Scholar 

  4. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering, Heidelberg: Springer, 2006

    Book  Google Scholar 

  5. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett., 1997, 78(9): 1667

    Article  ADS  Google Scholar 

  6. S. Nie and S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, 1997, 275(5303): 1102

    Article  Google Scholar 

  7. H. Xu, E. Bjerneld, M. Käll, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett., 1999, 83(21): 4357

    Article  ADS  Google Scholar 

  8. A. Micheals, M. Nirmal, and L. Brus, Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals, J. Am. Chem. Soc., 1999, 121(43): 9932

    Article  Google Scholar 

  9. J. A. Dieringer, K. A. Lettan, Scheidt, and R. P. Van Duyne, A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy, J. Am. Chem. Soc., 2007, 129(51): 16249

    Article  Google Scholar 

  10. Y. C. Cao, R. Jin, and C. A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection., Science, 2002, 297(5586): 1536

    Article  ADS  Google Scholar 

  11. X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. M. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nat. Biotechnol., 2008, 26(1): 83

    Article  Google Scholar 

  12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater., 2008, 7(6): 442

    Article  ADS  Google Scholar 

  13. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature, 2010, 464: 392

    Article  ADS  Google Scholar 

  14. H. Xu, J. Aizpurua, M. Käll, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering, Phys. Rev. E, 2000, 62(3): 4318

    Article  ADS  Google Scholar 

  15. M. Inoue, and K. Ohtaka, Surface enhanced Raman scattering by metal spheres (I): Cluster effect, J. Phys. Soc. Jpn., 1983, 52(11): 3853

    Article  ADS  Google Scholar 

  16. K. Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures, Phys. Rev. B, 2010, 81(11): 115406

    Article  ADS  Google Scholar 

  17. D. Wang and M. Kerker, Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids, Phys. Rev. B, 1981, 24(4): 1777

    Article  ADS  Google Scholar 

  18. M. Moskovits, Surface-enhanced spectroscopy, Rev. Mod. Phys., 1985, 57(3): 783

    Article  ADS  Google Scholar 

  19. B. Pettinger, Light scattering by adsorbates at Ag particles: Quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs, J. Chem. Phys., 1986, 85(12): 7442

    Article  ADS  Google Scholar 

  20. H. Xu, X. H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, Unified treatment of fluorescence and raman scattering processes near metal surfaces, Phys. Rev. Lett., 2004, 93(24): 243002

    Article  ADS  Google Scholar 

  21. J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, Chargetransfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions, J. Chem. Phys., 1986, 84(8): 4174

    Article  ADS  Google Scholar 

  22. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, Surfaceenhanced Raman scattering, J. Phys.: Condens. Matter, 1992, 4(5): 1143

    ADS  Google Scholar 

  23. A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev., 1998, 27(4): 241

    Article  Google Scholar 

  24. R. L. Birke, V. Znamenskiy, and J. R. Lombardi, A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex, J. Chem. Phys., 2010, 132(21): 214707

    Article  ADS  Google Scholar 

  25. D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, Electrochemicalsurface-enhanced Raman spectroscopy of nanostructures, Chem. Soc. Rev., 2008, 37(5): 1025

    Article  Google Scholar 

  26. K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites, Nano Lett., 2006, 6(10): 2173

    Article  ADS  Google Scholar 

  27. E. Le Ru and P. Etchegoin, Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy, Chem. Phys. Lett., 2006, 423(1–3): 63

    ADS  Google Scholar 

  28. S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, Quantifying resonant Raman cross sections with SERS, J. Phys. Chem. A, 2010, 114(17): 5515

    Article  Google Scholar 

  29. A. Sujith, T. Itoh, H. Abe, A. A. Anas, K. Yoshida, V. Biju, and M. Ishikawa, Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall, Appl. Phys. Lett., 2008, 92(10): 103901

    Article  ADS  Google Scholar 

  30. A. Sujith, T. Itoh, H. Abe, K. Yoshida, M. S. Kiran, V. Biju, and M. Ishikawa, Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy, Anal. Bioanal. Chem., 2009, 394(7): 1803

    Article  Google Scholar 

  31. M. S. Kiran, H. Abe, Y. Fujita, K. Tomimoto, V. Biju, M. Ishikawa, Y. Ozaki, and T. Itoh, Inhibition assay of yeast cell walls by plasmon resonance Rayleigh scattering and surface-enhanced Raman scattering imaging, Langmuir, 2012, 28(14): 8952

    Google Scholar 

  32. H. Kudo, T. Itoh, T. Kashiwagi, M. Ishikawa, H. Takeuchi, and H. Ukeda, Surface enhanced Raman scattering spectroscopy of Ag nanoparticle aggregates directly photo-reduced on pathogenic bacterium (Helicobacter pylori), J. Photochem. Photobiol. Chem., 2011, 221(2–3): 181

    Article  Google Scholar 

  33. Y. Kitahama, T. Itoh, T. Ishido, K. Hirano, and M. Ishikawa, Surface-enhanced Raman scattering from photo-reduced Ag nanoaggregates on an optically trapped single bacterium, Bull. Chem. Soc. Jpn., 2011, 84(9): 976978

    Google Scholar 

  34. M. S. Kiran, T. Itoh, K. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy, Anal. Chem., 2010, 82(4): 1342

    Article  Google Scholar 

  35. K. Yoshida, T. Itoh, V. Biju, M. Ishikawa, and Y. Ozaki, Experimental evaluation of the twofold electromagnetic enhancement theory of surface-enhanced resonance Raman scattering, Phys. Rev. B, 2009, 79(8): 085419

    Article  ADS  Google Scholar 

  36. T. Itoh, K. Yoshida, V. Biju, Y. Kikkawa, M. Ishikawa, and Y. Ozaki, Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of anti-Stokes and Stokes Raman spectra, Phys. Rev. B, 2007, 76(8): 085405

    Article  ADS  Google Scholar 

  37. T. Itoh, K. Yoshida, H. Tamaru, V. Biju, and M. Ishikawa, Experimental demonstration of the electromagnetic mechanism underlying surface enhanced Raman scattering using single nanoparticle spectroscopy, J. Photochem. Photobiol. Chem., 2011, 219(2–3): 167

    Article  Google Scholar 

  38. T. Itoh, M. Iga, H. Tamaru, K. Yoshida, V. Biju, and M. Ishikawa, Quantitative evaluation of blinking in surface enhanced resonance Raman scattering and fluorescence by electromagnetic mechanism, J. Chem. Phys., 2012, 136(2): 024703

    Article  ADS  Google Scholar 

  39. S. Habuchi, M. Cotlet, R. Gronheid, G. Dirix, J. Michiels, J. Vanderleyden, F. C. De Schryver, and J. Hofkens, Single-molecule surface enhanced resonance Raman spectroscopy of the enhanced green fluorescent protein, J. Am. Chem. Soc., 2003, 125(28): 8446

    Article  Google Scholar 

  40. J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Duyne, Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles, J. Am. Chem. Soc., 2007, 129(24): 7647

    Article  Google Scholar 

  41. R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner, On/off blinking and switching behaviour of single molecules of green fluorescent protein, Nature, 1997, 388(6640): 355

    Article  ADS  Google Scholar 

  42. J. Yu, D. Hu, and P. F. Barbara, Unmasking electronic energy transfer of conjugated polymers by suppression of O2 quenching, Science, 2000, 289(5483): 1327

    Article  ADS  Google Scholar 

  43. K. A. Bosnick, J. Jiang, and L. E. Brus, Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates, J. Phys. Chem. B, 2002, 106(33): 8096

    Article  Google Scholar 

  44. S. R. Emory, R. A. Jensen, T. Wenda, M. Y. Han, and S. M. Nie, Re-examining the origins of spectral blinking in singlemolecule and single-nanoparticle SERS, Faraday Discuss., 2006, 132: 249

    Article  ADS  Google Scholar 

  45. Z. Wang and L. J. Rothberg, Origins of blinking in singlemolecule Raman spectroscopy, J. Phys. Chem. B, 2005, 109(8): 3387

    Article  Google Scholar 

  46. A. Weiss and G. Haran, Time-dependent single-molecule Raman scattering as a probe of surface dynamics, J. Phys. Chem. B, 2001, 105(49): 12348

    Article  Google Scholar 

  47. M. Moskovits, L. L. Tay, J. Yang, and T. Haslett, SERS and the single molecule, Top. Appl. Phys., 2002, 82: 215

    Article  ADS  Google Scholar 

  48. P. Lee and D. Misel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols, J. Phys. Chem., 1982, 86(17): 3391

    Article  Google Scholar 

  49. T. Itoh, Y. Kikkawa, K. Yoshida, K. Hashimoto, V. Biju, M. Ishikawa, and Y. Ozaki, Correlated measurements of plasmon resonance Rayleigh scattering and surface-enhanced resonance Raman scattering using a dark-field microspectroscopic system, J. Photochem. Photobiol. Chem., 2006, 2183(3): 322

    Article  Google Scholar 

  50. A. Otto, Theory of first layer and single molecule surface enhanced Raman scattering (SERS), Phys. Status Solidi, 2001, 188(4): 1455

    Article  ADS  MathSciNet  Google Scholar 

  51. J. M. Reyes-Goddard, H. Barr, and N. Stone, Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids, Photodiagn. Photodyn. Ther., 2005, 2(3): 223

    Article  Google Scholar 

  52. S. Farquharson, A. D. Gift, C. Shende, P. Maksymiuk, F. E. Inscore, and J. Murran, Detection of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy, Vib. Spectrosc., 2005, 38(1–2): 79

    Article  Google Scholar 

  53. G. Breuzarda, O. Piota, J. F. Angibousta, M. Manfaita, L. Candeilb, M. Del Riob, and J. M. Millota, Changes in adsorption and permeability of mitoxantrone on plasma membrane of BCRP/MXR resistant cells, Biochem. Biophys. Res. Commun., 2005, 329(1): 64

    Article  Google Scholar 

  54. V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules, J. Raman Spectrosc., 2005, 36: 648

    Article  ADS  Google Scholar 

  55. R. M. Jarvis, A. Brooker, and R. Goodacre, Surfaceenhanced Raman scattering for the rapid discrimination of bacteria, Faraday Discuss., 2006, 132: 281

    Article  ADS  Google Scholar 

  56. F. Yan, and T. Vo-Dinh, Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor, Sens. Actuators B Chem., 2007, 121(1): 61

    Article  Google Scholar 

  57. T. M. Cotton, S. G. Schultz, and R. P. Van Duyne, Surfaceenhanced resonance Raman scattering from cytochrome c and myoglobin adsorbed on a silver electrode, J. Am. Chem. Soc., 1980, 102(27): 7960

    Article  Google Scholar 

  58. H. Morjani, J. F. Riou, I. Nabiev, F. Lavelle, and M. M. Manfait, Molecular and cellular interactions between intoplicine, DNA, and topoisomerase II studied by surface-enhanced Raman scattering spectroscopy, Cancer Res., 1993, 53(20): 4784

    Google Scholar 

  59. M. Manfait, H. Morjani, and I. Nabiev, Molecular events on simple living cancer cells as studied by spectrofluorometry and micro-SERS Raman spectroscopy, J. Cell. Pharmacol., 1992, 3: 120

    Google Scholar 

  60. I. R. Nabiev, H. Morjani, and M. Manfait, Selective analysis of antitumor drug interaction with living cancer cells as probed by surface-enhanced Raman spectroscopy, Eur. Biophys. J., 1991, 19(6): 311

    Google Scholar 

  61. K. K. Sandhu, C. M. McIntosh, J. M. Simard, S. W. Smith, and V. M. Rotello, Gold nanoparticle-mediated transfection of mammalian cells, Bioconjug. Chem., 2002, 13(1): 3

    Article  Google Scholar 

  62. G. Han, C. C. You, B. J. Kim, R. S. Turingan, N. S. Forbes, C. T. Martin, and V. M. Rotello, Light-regulated release of DNA and its delivery to nuclei by means of photo-labile gold nanoparticles, Angew. Chem. Int. Ed. Engl., 2006, 45(19): 3165

    Article  Google Scholar 

  63. R. M. Jarvis and R. Goodacre, Discrimination of bacteria using surface-enhanced Raman spectroscopy, Anal. Chem., 2004, 76(1): 40

    Article  Google Scholar 

  64. J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, and K. Kneipp, In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates, Nano Lett., 2006, 6(10): 2225

    Article  ADS  Google Scholar 

  65. L. Zeiri, B. V. Bronk, Y. Shabtai, J. Eichler, and S. Efrima, Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria, Appl. Spectrosc., 2004, 58(1): 33

    Article  ADS  Google Scholar 

  66. C. Eliasson, A. Lorén, J. Engelbrektsson, M. Josefson, J. Abrahamsson, and K. Abrahamsson, Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2005, 61(4): 755

    Article  ADS  Google Scholar 

  67. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Ultrasensitive chemical analysis by Raman spectroscopy, Chem. Rev., 1999, 99(10): 2957

    Article  Google Scholar 

  68. Y. C. Cao, R. Jin, and C. A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science, 2002, 297(5586): 1536

    Article  ADS  Google Scholar 

  69. K. Kneipp, H. Kneipp, and J. Kneipp, Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells, Acc. Chem. Res., 2006, 39(7): 443

    Article  Google Scholar 

  70. W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, Characterization of the surface enhanced raman scattering (SERS) of bacteria, J. Phys. Chem. B, 2005, 109(1): 312

    Article  Google Scholar 

  71. J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, Sizedependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis, Biochem. J., 2004, 377: 159

    Article  Google Scholar 

  72. W. J. Arlein, J. D. Shearer, and M. D. Caldwell, Continuity between wound macrophage and fibroblast phenotype: analysis of wound fibroblast phagocytosis, Am. J. Physiol., 1998, 275: R1041

  73. A. G. Tkachenko, H. Xie, Y. L. Liu, D. Coleman, J. Ryan, W. R. Glomm, M. K. Shipton, S. Franzen, and D. L. Feldheim, Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains, Bioconjug. Chem., 2004, 15(3): 482

    Article  Google Scholar 

  74. P. R. Carey, Resonance Raman labels and Raman labels, J. Raman Spectrosc., 1998, 29(10–11): 861

    Article  ADS  Google Scholar 

  75. K. Nithipatikom, M. J. McCoy, S. R. Hawi, K. Nakamoto, F. Adar, and W. B. Campbell, Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells, Anal. Biochem., 2003, 322(2): 198

    Article  Google Scholar 

  76. C. E. Talley, T. R. Huser, C. W. Hollars, L. Jusinski, T. Laurence, and S. M. Lane, Nanoparticle Based Surface-Enhanced Raman Spectroscopy, UCRL-PROC-208863, NATO Advanced Study Institute: Biophotonics Ottawa, Canada, 2005

    Google Scholar 

  77. C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, Intracellular pH sensors based on surface-enhanced Raman scattering, Anal. Chem., 2004, 76(23): 7064

    Article  Google Scholar 

  78. B. Alberts, and D. Bray, D. J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, New York: Garland Publishing, 1994

    Google Scholar 

  79. M. Fukasawa, F. Sekine, M. Miura, M. Nishijima, and K. Hanada, Involvement of heparan sulfate proteoglycans in the binding step for phagocytosis of latex beads by Chinese hamster ovary cells, Exp. Cell Res., 1997, 230(1): 154

    Article  Google Scholar 

  80. R. J. Dijkstra, W. J. J. M. Scheenen, N. Dam, E. W. Roubos, and J. J. ter Meulen, Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy, J. Neurosci. Methods, 2007, 159(1): 43

    Article  Google Scholar 

  81. R. H. Chow, L. von Rüden, and E. Neher, Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells, Nature, 1992, 356(6364): 60

    Article  ADS  Google Scholar 

  82. T. Vo-Dinh, F. Yan, and M.B. Wabuyele, Surface-enhanced Raman scattering for medical-diagnostics and biological imaging, J. Raman Spectrosc., 2005, 36: 640

    Article  ADS  Google Scholar 

  83. T. Vo-Dinh, P. Kasili, and M. Wabuyele, Nanoprobes and nanobiosensors for monitoring and imaging individual living cells, Nanomed.: Nanotechnol. Biol. Med., 2006, 2(1): 22

    Article  Google Scholar 

  84. S. Lee, S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh, Biological imaging of HEK293 cells expressing PLCgamma1 using surface-enhanced Raman microscopy, Anal. Chem., 2007, 79(3): 916

    Article  Google Scholar 

  85. G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents, Proc. Natl. Acad. Sci. USA, 2006, 103(5): 1215

    Article  ADS  Google Scholar 

  86. Q. Hu, L. L. Tay, M. Noestheden, and J. P. Pezacki, Mammalian cell surface imaging with nitrile-functionalized nanoprobes: biophysical characterization of aggregation and polarization anisotropy in SERS imaging, J. Am. Chem. Soc., 2007, 129(1): 14

    Article  Google Scholar 

  87. G. U. Puppel, F. F. M. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Studying single living cells and chromosomes by confocal Raman microspectroscopy, Nature, 1990, 347: 301

    Article  ADS  Google Scholar 

  88. W. L. Peticolas, T. W. Patapoff, G. A. Thomas, J. Postlewait, and J. W. Powell, Laser Raman microscopy of chromosomes in living eukaryotic cells: DNA polymorphisim in vivo, J. Raman Spectrosc., 1996, 27: 571

    Article  ADS  Google Scholar 

  89. B. B. Chomel, Control and prevention of emerging zoonoses, J. Vet. Med. Educ., 2003, 30(2): 145

    Article  Google Scholar 

  90. R. M. Jarvis and R. Goodacre, Discrimination of bacteria using surface-enhanced Raman spectroscopy, Anal. Chem., 2004, 76(1): 40

    Article  Google Scholar 

  91. S. E. J. Bell, J. N. Mackle, and N. M. S. Sirimuthu, Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid — towards rapid anthrax endospore detection, Analyst, 2005, 130(4): 545

    Article  ADS  Google Scholar 

  92. X. Zhang, N. C. Shah, and R. P. Van Duyne, Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS), Vib. Spectrosc., 2006, 42(1): 2

    Article  Google Scholar 

  93. G. Naja, P. Bouvrette, S. Hrapovic, and J. H. T. Luong, Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies, Analyst, 2007, 132(7): 679

    Article  ADS  Google Scholar 

  94. J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay, Anal. Chem., 2005, 77(19): 6147

    Article  Google Scholar 

  95. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate, Nano Lett., 2006, 6(11): 2630

    Article  ADS  Google Scholar 

  96. Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, Raman dye-labeled nanoparticle probes for proteins, J. Am. Chem. Soc., 2003, 125(48): 14676

    Article  Google Scholar 

  97. J. Johanson, K. Abravaya, W. Caminiti, D. Erickson, R. Flanders, G. Leckie, E. Marshall, C. Mullen, Y. Ohhashi, R. Perry, J. Ricci, J. Salituro, A. Smith, N. Tang, M. Vi, and J. Robinson, A new ultrasensitive assay for quantitation of HIV-1 RNA in plasma, J. Virol. Methods, 2001, 95(1–2): 81

    Article  Google Scholar 

  98. S. M. H. Abanto, M. H. Hirata, R. D. C. Hirata, E. M. Mamizuka, M. Schmal, and S. Hoshino-Shimizu, Evaluation of Henes-PCR assay for Mycobacterium detection in different clinical specimens from patients with or without tuberculosis-associated HIV infection, J. Clin. Lab. Anal., 2000, 14(5): 238

    Article  Google Scholar 

  99. N. R. Isola, D. L. Stokes, and T. Vo-Dinh, Surface-enhanced Raman gene probe for HIV detection, Anal. Chem., 1998, 70(7): 1352

    Article  Google Scholar 

  100. For example: S. Weiss, Fluorescence spectroscopy of single biomolecules, Science, 1999, 283(5408): 1676

    Article  ADS  Google Scholar 

  101. M. Osumi, The ultrastructure of yeast: Cell wall structure and formation, Micron, 1998, 29(2–3): 207

    Article  Google Scholar 

  102. E. Podstawka and L. M. Proniewicz, Resonance Raman study of deoxy and ligated (O2 and CO) mesoheme IXreconstituted myoglobin, hemoglobin and its alpha and beta subunits, J. Inorg. Biochem., 2004, 98(9): 1502

    Article  Google Scholar 

  103. Y. Jin, M. Nagai, Y. Nagai, S. Nagatomo, and T. Kitagawa, Heme structures of five variants of hemoglobin M probed by resonance Raman spectroscopy, Biochemistry, 2004, 43(26): 8517

    Article  Google Scholar 

  104. D. Wang and T. G. Spiro, Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy, Biochemistry, 1998, 37(28): 9940

    Article  Google Scholar 

  105. V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, Hemoglobin allostery: Resonance Raman spectroscopy of kinetic intermediates, Science, 1995, 269(5232): 1843

    Article  ADS  Google Scholar 

  106. P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, Observation of dynamic oxygen release in hemoglobin using surface enhanced Raman scattering, Chem. Phys. Lett., 2003, 367(1–2): 223

    Article  ADS  Google Scholar 

  107. T. G. Spiro and T. C. Strekas, Resonance Raman spectra of heme proteins: Effects of oxidation and spin state, J. Am. Chem. Soc., 1974, 96(2): 338

    Article  Google Scholar 

  108. I. P. Torres Filho, J. Terner, R. N. Pittman, E. Proffitt, and K. R. Ward, Measurement of hemoglobin oxygen saturation using Raman microspectroscopy and 532-nm excitation, J. Appl. Physiol., 2008, 104(6): 1809

    Article  Google Scholar 

  109. S. E. Bell and N. M. Sirimuthu, Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotide, J. Am. Chem. Soc., 2006, 128(49): 15580

    Article  Google Scholar 

  110. E. Bailo, L. Fruk, C. M. Niemeyer, and V. Deckert, Surfaceenhanced Raman scattering as a tool to probe cytochrome P450-catalysed substrate oxidation, Anal. Bioanal. Chem., 2009, 394(7): 1797

    Article  Google Scholar 

  111. K. Niki, Y. Kawasaki, Y. Kimura, Y. Higuchi, and N. Yasuoka, Surface-enhanced Raman scattering of cytochromes c3 adsorbed on silver electrode and their redox behavior, Langmuir, 1987, 3(6): 982

    Article  Google Scholar 

  112. D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, In vivo glucose measurement by surface-enhanced Raman spectroscopy, Anal. Chem., 2006, 78(20): 7211

    Article  Google Scholar 

  113. O. Lyandres, J. M. Yuen, N. C. Shah, R. P. Van Duyne, J. T. Walsh, Jr., and M. R. Glucksberg, Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor, Diabetes Technology & Therapeutics, 2008, 10(4): 257

    Article  Google Scholar 

  114. J. P. Camden, J. A. Dieringer, J. Zhao, and R. P. Van Duyne, Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing, Acc. Chem. Res., 2008, 41(12): 1653

    Article  Google Scholar 

  115. M. Iga, N. Kakuryu, T. Tanaami, J. Sajiki, K. Isozaki, and T. Itoh, Development of thin-film tunable band-pass filters based hyper-spectral imaging system applied for both surface enhanced Raman scattering and plasmon resonance Rayleigh scattering, Rev. Sci. Instrum., 2012, 83(10): 103707

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamitake Itoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, Y.S., Ishikawa, M., Ozaki, Y. et al. Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing. Front. Phys. 9, 31–46 (2014). https://doi.org/10.1007/s11467-013-0347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0347-3

Keywords

Navigation