Advertisement

Frontiers of Mechanical Engineering

, Volume 12, Issue 3, pp 321–332 | Cite as

Power fluctuation and power loss of wind turbines due to wind shear and tower shadow

  • Binrong Wen
  • Sha Wei
  • Kexiang Wei
  • Wenxian Yang
  • Zhike Peng
  • Fulei Chu
Research Article

Abstract

The magnitude and stability of power output are two key indices of wind turbines. This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine. First, wind speed models, particularly the wind shear model and the tower shadow model, are described in detail. The widely accepted tower shadow model is modified in view of the cone-shaped towers of modern large-scale wind turbines. Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory. Results indicate that power fluctuation is mainly caused by tower shadow, whereas power loss is primarily induced by wind shear. Under steady wind conditions, power loss can be divided into wind farm loss and rotor loss. Wind farm loss is constant at 3α(3α–1)R2/(8H2). By contrast, rotor loss is strongly influenced by the wind turbine control strategies and wind speed. That is, when the wind speed is measured in a region where a variable-speed controller works, the rotor loss stabilizes around zero, but when the wind speed is measured in a region where the blade pitch controller works, the rotor loss increases as the wind speed intensifies. The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

Keywords

wind turbine wind shear tower shadow power fluctuation power loss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11632011, 11572189, and 51421092), and the China Postdoctoral Science Foundation (Grant No. 2016M601585).

References

  1. 1.
    Thiringer T. Power quality measurements performed on a lowvoltage grid equipped with two wind turbines. IEEE Transactions on Energy Conversion, 1996, 11(3): 601–606CrossRefGoogle Scholar
  2. 2.
    Thiringer T, Dahlberg J A. Periodic pulsations from a three-bladed wind turbine. IEEE Transactions on Energy Conversion, 2001, 16(2): 128–133CrossRefGoogle Scholar
  3. 3.
    Sørensen P, Hansen A D, Rosas P A C. Wind models for simulation of power fluctuations from wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12–15): 1381–1402CrossRefGoogle Scholar
  4. 4.
    Dolan D S L, Lehn P W. Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow. IEEE Transactions on Energy Conversion, 2006, 21(3): 717–724CrossRefGoogle Scholar
  5. 5.
    Kong Y, Gu J, Wang J. Load analysis and power control of large wind turbine based on wind shear and tower shadow. Journal of Southeast University, 2010, 40(1): 228–233 (in Chinese)Google Scholar
  6. 6.
    Kong Y, Wang J, Gu J, et al. Dynamics modeling of wind speed based on wind shear and tower shadow for wind turbine. Acta Energiae Solaris Sinica, 2011, 32(8): 1237–1244 (in Chinese)Google Scholar
  7. 7.
    Das S, Karnik N, Santoso S. Time-domain modeling of tower shadow and wind shear in wind turbines. ISRN Renewable Energy, 2011, 890582Google Scholar
  8. 8.
    Dai J, Hu Y, Liu D, et al. Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model. Renewable Energy, 2011, 36(3): 1095–1104CrossRefGoogle Scholar
  9. 9.
    Han Z, Li Y, Ji J. Numerical study on 3D steady flow of a 1.3 MW wind turbine considering wind shear factor. Journal of Chinese Society of Power Engineering, 2011, 31(10): 779–783 (in Chinese)Google Scholar
  10. 10.
    Liu L, Shi K, Yang K, et al. Effects of wind shear on the aerodynamic load of wind turbine. Journal of Engineering Thermophysics, 2010, 31(10): 1667–1670 (in Chinese)Google Scholar
  11. 11.
    Hughes F M, Anaya-Lara O, Ramtharan G, et al. Influence of tower shadow and wind turbulence on the performance of power system stabilizers for DFIG-based wind farms. IEEE Transactions on Energy Conversion, 2008, 23(2): 519–528CrossRefGoogle Scholar
  12. 12.
    Zhang J, Guo L, Wu H, et al. The influence of wind shear on vibration of geometrically nonlinear wind turbine blade under fluidstructure interaction. Ocean Engineering, 2014, 84: 14–19CrossRefGoogle Scholar
  13. 13.
    Wang H, Zhang B, Qiu Q. Numerical study of the effects of wind shear coefficients on the flow characteristics of the near wake of a wind turbine blade. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 230(1): 86–98CrossRefGoogle Scholar
  14. 14.
    Sezer-Uzol N, Uzol O. Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor. Wind Energy (Chichester, England), 2013, 16(1): 1–17CrossRefGoogle Scholar
  15. 15.
    Xing Z, Chen L, Li W, et al. Pitch control method study on reducing the effects of tower shadow and wind shear. Acta Energiae Solaris Sinica, 2013, 34(6): 916–923 (in Chinese)Google Scholar
  16. 16.
    Zhou B, Gong H, Zhen Z. The analysis of the pitch control of wind turbine by the influences of wind shear and tower shadow. Renewable Energy Resources, 2012, 30(1): 27–32 (in Chinese)MathSciNetGoogle Scholar
  17. 17.
    Bossanyi E A, Hassan G, Lane S. Individual blade pitch control for load reduction. Wind Energy (Chichester, England), 2003, 6(2): 119–128CrossRefGoogle Scholar
  18. 18.
    Namik H, Stol K. Individual blade pitch control of floating offshore wind turbines. Wind Energy (Chichester, England), 2010, 13(1): 74–85CrossRefGoogle Scholar
  19. 19.
    Namik H, Stol K. Individual blade pitch control of a floating offshore wind turbine on a tension leg platform. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Olando, 2010CrossRefGoogle Scholar
  20. 20.
    Liao M, Xu K, Wu B, et al. Effect of wind shear on wind turbine power. Journal of Shenyang University of Technology, 2008, 30(2): 163–167 (in Chinese)Google Scholar
  21. 21.
    Jonkman J B S, Musial W, Scott G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. NREL/TP-500-38060. 2009CrossRefGoogle Scholar
  22. 22.
    Moriarty P J, Hansen A C. AeroDyn Theory Manual. Salt Lake City: National Renewable Energy Laboratory, 2005CrossRefGoogle Scholar
  23. 23.
    Wu Y, Wang H. Preliminary analysis on effect of wind shear on output power for large diameter wind turbine. Energy Engineering, 2011, 6: 33–35 (in Chinese)Google Scholar
  24. 24.
    Jia Y. A wind turbine simulator for wind generation research. Acta Energiae Solaris Sinica, 2004, 25(6): 735–739 (in Chinese)Google Scholar
  25. 25.
    Li W, Xu D, Zhang W, et al. Research on wind turbine emulation based on DC motor. IEEE Conference on Industrial Electronics and Applications, 2007, 5: 2589–2593Google Scholar
  26. 26.
    Jiang H. Power limit of horizontal axis wind turbine. Journal of Mechanical Engineering, 2011, 47(10): 113–118 (in Chinese)CrossRefGoogle Scholar
  27. 27.
    Burton T, Sharpe D, Jenkins N, et al.Wind Energy Handbook. 2001. New York: John Wiley & Sons, 2014, 48–49Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Binrong Wen
    • 1
  • Sha Wei
    • 1
  • Kexiang Wei
    • 2
  • Wenxian Yang
    • 3
  • Zhike Peng
    • 1
  • Fulei Chu
    • 4
  1. 1.Institute of Vibration, Shock and NoiseShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Hunan Province Cooperative Innovation Center for Wind Power Equipment and Energy ConversionXiangtanChina
  3. 3.School of Marine Science and TechnologyNewcastle UniversityNewcastle upon TyneUK
  4. 4.Department of Mechanical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations