Skip to main content
Log in

Review of self-referenced measurement algorithms: Bridging lateral shearing interferometry and multi-probe error separation

  • Review Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

With the development of new materials and ultra-precision processing technology, the sizes of measured objects increase, and the requirements for machining accuracy and surface quality become more exacting. The traditional measurement method based on reference datum is inadequate for measuring a high-precision object when the quality of the reference datum is approximately within the same order as that of the object. Self-referenced measurement techniques provide an effective means when the direct reference-based method cannot satisfy the required measurement or calibration accuracy. This paper discusses the reconstruction algorithms for self-referenced measurement and connects lateral shearing interferometry and multi-probe error separation. In lateral shearing interferometry, the reconstruction algorithms are generally categorized into modal or zonal methods. The multi-probe error separation techniques for straightness measurement are broadly divided into two-point and three-point methods. The common features of the lateral shearing interferometry method and the multi-probe error separation method are identified. We conclude that the reconstruction principle in lateral shearing interferometry is similar to the two-point method in error separation on the condition that no yaw error exists. This similarity may provide a basis or inspiration for the development of both classes of methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Malacara D. Optical Shop Testing. 3rd ed. New York: JohnWiley & Sons, Inc., 2007, 83, 501–503, 651–654

    Book  Google Scholar 

  2. International Vocabulary of Metrology—Basic and General Concepts and Associated Terms. (VIM 3rd edition), JCGM 200:2012, http://www.bipm.org/en/publications/guides/#vim

  3. Evans C J, Hocken R J, Estler W T. Self-calibration: Reversal, redundancy, error separation, and ‘absolute testing’. CIRP Annals —Manufacturing Technology, 1996, 45(2): 617–634

    Article  Google Scholar 

  4. PHYSICS. The SID4 HR sensor. http://www.phasicscorp.com/products/wavefront-sensors/sid4-hr-wavefront-sensor.html

  5. Korwan D. Lateral shearing interferogram analysis. Proceedings of the Society for Photo-Instrumentation Engineers, 1983, 429: 194–198

    Google Scholar 

  6. Cubalchini R. Modal wave-front estimation from phase derivative measurements. Journal of the Optical Society of America, 1979, 69 (7): 972–977

    Article  Google Scholar 

  7. Rimmer M P, Wyant J C. Evaluation of large aberrations using a lateral-shear interferometer having variable shear. Applied Optics, 1975, 14(1): 142–150

    Article  Google Scholar 

  8. Dai F, Tang F,Wang X, et al. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: Comparisons of existing algorithms. Applied Optics, 2012, 51 (21): 5028–5037

    Article  Google Scholar 

  9. Herrmann J. Cross coupling and aliasing in modal wavefront estimation. Journal of the Optical Society of America, 1981, 71(8): 989–992

    Article  Google Scholar 

  10. Harbers G, Kunst P J, Leibbrandt G W R. Analysis of lateral shearing interferograms by use of Zernike polynomials. Applied Optics, 1996, 35(31): 6162–6172

    Article  Google Scholar 

  11. Dai F, Tang F, Wang X, et al. Use of numerical orthogonal transformation for the Zernike analysis of lateral shearing interferograms. Optics Express, 2012, 20(2): 1530–1544

    Article  Google Scholar 

  12. Liu X. A polarized lateral shearing interferometer and application for on-machine form error measurement of engineering surfaces. Dissertation for the Doctoral Degree. Hong Kong: Hong Kong University of Science and Technology, 2003

    Book  Google Scholar 

  13. Ling T, Yang Y, Yue X, et al. Common-path and compact wavefront diagnosis system based on cross grating lateral shearing interferometer. Applied Optics, 2014, 53(30): 7144–7152

    Article  Google Scholar 

  14. Freischlad K R, Koliopoulos C L. Modal estimation of a wave front from difference measurements using the discrete Fourier transform. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1986, 3(11): 1852–1861

    Article  Google Scholar 

  15. Elster C, Weingärtner I. Solution to the shearing problem. Applied Optics, 1999, 38(23): 5024–5031

    Article  Google Scholar 

  16. Flynn T J. Two-dimensional phase unwrapping with minimum weighted discontinuity. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1997, 14(10): 2692–2701

    Article  Google Scholar 

  17. Guo Y, Chen H, Xu J, et al. Two-dimensional wavefront reconstruction from lateral multi-shear interferograms. Optics Express, 2012, 20(14): 15723–15733

    Article  Google Scholar 

  18. Ling T, Yang Y, Liu D, et al. General measurement of optical system aberrations with a continuously variable lateral shear ratio by a randomly encoded hybrid grating. Applied Optics, 2015, 54(30): 8913–8920

    Article  Google Scholar 

  19. Karp J H, Chan T K, Ford J E. Integrated diffractive shearing interferometry for adaptive wavefront sensing. Applied Optics, 2008, 47(35): 6666–6674

    Article  Google Scholar 

  20. Elster C, Weingärtner I. Exact wave-front reconstruction from two lateral shearing interferograms. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1999, 16(9): 2281–2285

    Article  Google Scholar 

  21. Elster C. Exact two-dimensional wave-front reconstruction from lateral shearing interferograms with large shears. Applied Optics, 2000, 39(29): 5353–5359

    Article  Google Scholar 

  22. Guo Y, Xia J, Ding J. Recovery of wavefront from multi-shear interferograms with different tilts. Optics Express, 2014, 22(10): 11407–11416

    Article  Google Scholar 

  23. Dai G M. Modified Hartmann-Shack wavefront sensing and iterative wavefront reconstruction. Proceedings of the Society for Photo-Instrumentation Engineers, Adaptive Optics in Astronomy, 1994, 2201: 562–573

    Google Scholar 

  24. Dai G M. Modal wavefront reconstruction with Zernike polynomials and Karhunen-Loève functions. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1996, 13 (6): 1218–1225

    Article  MathSciNet  Google Scholar 

  25. Leibbrandt G, Harbers G, Kunst P. Wave-front analysis with high accuracy by use of a double-grating lateral shearing interferometer. Applied Optics, 1996, 35(31): 6151–6161

    Article  Google Scholar 

  26. Shen W, Chang M, Wan D. Zernike polynomial fitting of lateral shearing interferometry. Optical Engineering, 1997, 36(3): 905–913

    Article  Google Scholar 

  27. van Brug H. Zernike polynomials as a basis for wave-front fitting in lateral shearing interferometry. Applied Optics, 1997, 36(13): 2788–2790

    Article  Google Scholar 

  28. Okuda S, Nomura T, Kamiya K, et al. High precision analysis of lateral shearing interferogram using the integration method and polynomials. Applied Optics, 2000, 39(28): 5179–5186

    Article  Google Scholar 

  29. De Nicola S M, Ferraro P, Finizio A, et al. Wave front aberration analysis in two beam reversal shearing interferometry by elliptical Zernike polynomials. Proceedings of the Society for Photo- Instrumentation Engineers, Laser Optics, 2004, 5481: 27–36

    Google Scholar 

  30. Dai G M. Wavefront reconstruction from slope data within pupils of arbitrary shapes using iterative Fourier transform. Open Optics Journal, 2007, 1(1): 1–3

    Article  MathSciNet  Google Scholar 

  31. Saunders J B. Measurement of wave fronts without a reference standard. Part 1. The wave-front-shearing interferometer. Journal of Research of the National Bureau of Standards—B. Mathematics and Mathematical Physics, 1961, 65B(4): 239–244

    Google Scholar 

  32. Rimmer MP. Method for evaluating lateral shearing interferograms. Applied Optics, 1974, 13(3): 623–629

    Article  Google Scholar 

  33. Hudgin R H. Wave-front reconstruction for compensated imaging. Journal of the Optical Society of America, 1977, 67(3): 375–378

    Article  Google Scholar 

  34. Fried D L. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements. Journal of the Optical Society of America, 1977, 67(3): 370–375

    Article  Google Scholar 

  35. Southwell W H. Wave-front estimation from wave-front slope measurements. Journal of the Optical Society of America, 1980, 70 (8): 998–1006

    Article  Google Scholar 

  36. Hunt B R. Matrix formulation of the reconstruction of phase values from phase differences. Journal of the Optical Society of America, 1979, 69(3): 393–399

    Article  Google Scholar 

  37. Herrmann J. Least-square wave-front errors of minimum norm. Journal of the Optical Society of America, 1980, 70(1): 28–35

    Article  MathSciNet  Google Scholar 

  38. Liu X, Gao Y, Chang M. A partial differential equation algorithm for wavefront reconstruction in lateral shearing interferometry. Journal of Optics A: Pure and Applied Optics, 2009, 11(4): 045702

    Article  Google Scholar 

  39. Zou W, Zhang Z. Generalized wave-front reconstruction algorithm applied in a Shack-Hartmann test. Applied Optics, 2000, 39(2): 250–268

    Article  Google Scholar 

  40. Zou W, Rolland J P. Iterative zonal wave-front estimation algorithm for optical testing with general shaped pupils. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 2005, 22 (5): 938–951

    Article  Google Scholar 

  41. Yin Z. Exact wavefront recovery with tilt from lateral shear interferograms. Applied Optics, 2009, 48(14): 2760–2766

    Article  Google Scholar 

  42. Nomura T, Okuda S, Kamiya K, et al. Improved Saunders method for the analysis of lateral shearing interferograms. Applied Optics, 2002, 41(10): 1954–1961

    Article  Google Scholar 

  43. Yatagai T, Kanou T. Aspherical surface testing with shearing interferometer using fringe scanning detection method. Proceedings of the Society for Photo-Instrumentation Engineers, Precision Surface Metrology, 1983, 23: 136–141

    Article  Google Scholar 

  44. Dai F, Tang F, Wang X, et al. Generalized zonal wavefront reconstruction for high spatial resolution in lateral shearing interferometry. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 2012, 29(9): 2038–2047

    Article  Google Scholar 

  45. Dai F, Tang F, Wang X, et al. High spatial resolution zonal wavefront reconstruction with improved initial value determination scheme for lateral shearing interferometry. Applied Optics, 2013, 52 (17): 3946–3956

    Article  Google Scholar 

  46. Noll R J. Phase estimates from slope-type wave-front sensors. Journal of the Optical Society of America, 1978, 68(1): 139–140

    Article  Google Scholar 

  47. Zou W, Rolland J P. Quantifications of error propagation in slopebased wavefront estimations. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 2006, 23(10): 2629–2638

    Article  Google Scholar 

  48. Takajo H, Takahashi T. Noniterative method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1988, 5(11): 1818–1827

    Article  Google Scholar 

  49. Shiozawa H, Fukutomi Y. Development of an ultra-precision 3DCMM with the repeatability of nanometer order. JSPE Publications Series, 1999, 3: 360–365 (in Japanese)

    Google Scholar 

  50. Negishi M, et al. A high-precision coordinate measurement machine for aspherical optics. JSPE Publications Series, 2000, 2000(2): 209–210 (in Japanese)

    Google Scholar 

  51. Whitehouse D J. Some theoretical aspects of error separation techniques in surface metrology. Journal of Physics E: Scientific Instruments, 1976, 9(7): 531–536

    Article  Google Scholar 

  52. Su H, Hong M, Li Z, et al. The error analysis and online measurement of linear slide motion error in machine tools. Measurement Science and Technology, 2002, 13(6): 895–902

    Article  Google Scholar 

  53. Kiyono S, Gao W. Profile measurement of machined surface with a new differential method. Precision Engineering, 1994, 16(3): 212–218

    Article  Google Scholar 

  54. Li J, Zhang L, Hong M. Unified theory of error separation techniques-accordance of time and frequency methods. Acta Metrologica Sinica, 2002, 23(3): 164–166

    Google Scholar 

  55. Tanka H, Tozawa K, Sato H, et al. Application of a new straightness measurement method to large machine tool. CIRP Annals—Manufacturing Technology, 1981, 30(1): 455–459

    Article  Google Scholar 

  56. Tozawa K, Sato H, O-hori M. A new method for the measurement of the straightness of machine tools and machined work. Journal of Mechanical Design, 1982, 104(3): 587–592

    Article  Google Scholar 

  57. Tanaka H, Sato H. Extensive analysis and development of straightness measurement by sequential-two-point method. Journal of Engineering for Industry, 1986, 108(3): 176–182

    Article  Google Scholar 

  58. Kiyono S, Huang P, Fukaya N. Datum introduced by software methods. In: International Conference of Advanced Mechatronics. 1989, 467–72

    Google Scholar 

  59. Kiyono S, Okuyama E. Study on measurement of surface undulation (2nd report): Feature measurement and digital filter. Journal of the Japan Society of Precision Engineering, 1988, 54(3): 513–518 (in Japanese)

    Article  Google Scholar 

  60. Omar B A, Holloway A J, Emmony D C. Differential phase quadrature surface profiling interferometer. Applied Optics, 1990, 29(31): 4715–4719

    Article  Google Scholar 

  61. Kiyono S, Gao W. Profile measurement of machined surface with a new differential method. Precision Engineering, 1994, 16(3): 212–218

    Article  Google Scholar 

  62. Gao W, Kiyono S. High accuracy profile measurement of a machined surface by the combined method. Measurement, 1996, 19 (1): 55–64

    Article  Google Scholar 

  63. Yin Z. Research on ultra-precision measuring straightness and surface micro topography analysis. Dissertation for the Doctoral Degree. Changsha: National University of Defense Technology, 2003 (in Chinese)

    Google Scholar 

  64. Tanaka H, Sato H. Extensive analysis and development of straightness measurement by sequential-two-points method. Journal of Engineering for Industry, 1986, 108(3): 176–182

    Article  Google Scholar 

  65. Gao W, Kiyono S. On-machine profile measurement of machined surface using the combined three-point method. JSME International Journal Series C: Mechanical Systems, Machine Elements and Manufacturing, 1997, 40(2): 253–259

    Article  Google Scholar 

  66. Gao W, Kiyono S. On-machine roundness measurement of cylindrical workpieces by the combined three-point method. Measurement, 1997, 21(4): 147–156

    Article  Google Scholar 

  67. Gao W, Yokoyama J, Kojima H, Kiyono S. Precision measurement of cylinder straightness using a scanning multi-probe system. Precision Engineering, 2002, 26(3): 279–288

    Article  Google Scholar 

  68. Yin Z, Li S. Exact straightness reconstruction for on-machine measuring precision workpiece. Precision Engineering, 2005, 29(4): 456–466

    Article  Google Scholar 

  69. Li S, Tan J, Pan P. Fine sequential-three-point method for on-line measurement of the straightness of precision lathes. Proceedings of the Society for Photo-Instrumentation Engineers, Measurement Technology and Intelligent Instruments, 1993, 2101, 309–312

    Article  Google Scholar 

  70. Su H, Hong M, Li Z, et al. The error analysis and online measurement of linear slide motion error in machine tools. Measurement Science and Technology, 2002, 13(6): 895–902

    Article  Google Scholar 

  71. Li C, Li S, Yu J. High resolution error separation technique for insitu straightness measurement of machine tools and workpiece. Mechatronics, 1996, 6(3): 337–347

    Article  Google Scholar 

  72. Liang J, Li S, Yang S. Problems and solving methods of on-line measuring straightness. Proceedings of the Society for Photo-Instrumentation Engineers, the International Society for Optical Engineering, 1993, 2101: 1081–1084

    Google Scholar 

  73. Fung E H K, Yang SM. An error separation technique for measuring straightness motion error of a linear slide. Measurement Science and Technology, 2000, 11(10): 1515–1521

    Article  Google Scholar 

  74. Fung E H K, Yang S M. An approach to on-machine motion error measurement of a linear slider. Measurement, 2001, 29(1): 51–62

    Article  Google Scholar 

  75. Yang S M, Fung E H K, Chiu W M. Uncertainty analysis of onmachine motion and profile measurement with sensor reading errors. Measurement Science and Technology, 2002, 13(12): 1937–1945

    Article  Google Scholar 

  76. Weingärtner I, Elster C. System of four distance sensors for high accuracy measurement of topography. Precision Engineering, 2004, 28(2): 164–170

    Article  Google Scholar 

  77. Elster C, Weingärtner I, Schulz M. Coupled distance sensor systems for high-accuracy topography measurement: Accounting for scanning stage and systematic sensor errors. Precision Engineering, 2006, 30(1): 32–38

    Article  Google Scholar 

  78. Schulz M, Gerhardt J, Geckeler R, et al. Traceable multiple sensor system for absolute form measurement. Proceedings of the Society for Photo-Instrumentation Engineers, Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies II, 2005, 5878: 58780A

    Article  Google Scholar 

  79. Yang P, Takamura T, Takahashi S, et al. Multi-probe scanning system comprising three laser interferometers and one autocollimator for measuring flat bar mirror profile with nanometer accuracy. Precision Engineering, 2011, 35(4): 686–692

    Article  Google Scholar 

  80. Yin Z, Li S, Tian F. Exact reconstruction method for on-machine measurement of profile. Precision Engineering, 2014, 38(4): 969–978

    Article  Google Scholar 

  81. Yin Z, Li S, Chen S, et al. China Patent, CN201410533360.8, 2014-10-11

  82. Chen F. Digital shearography: State of the art and some applications. Journal of Electronic Imaging, 2001, 10(1): 240–251

    Article  Google Scholar 

  83. Mallick S, Robin M L. Shearing interferometry by wavefront reconstruction using a single exposure. Applied Physics Letters, 1969, 14(2): 61–62

    Article  Google Scholar 

  84. Nakadate S. Phase shifting speckle shearing polarization interferometer using a birefringent wedge. Optics and Lasers in Engineering, 1997, 26(4–5): 331–350

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 51575520 and 51375488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, D., Chen, S., Yin, Z. et al. Review of self-referenced measurement algorithms: Bridging lateral shearing interferometry and multi-probe error separation. Front. Mech. Eng. 12, 143–157 (2017). https://doi.org/10.1007/s11465-017-0432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-017-0432-3

Keywords

Navigation