Frontiers of Mechanical Engineering

, Volume 12, Issue 1, pp 99–109 | Cite as

A review of the scalable nano-manufacturing technology for flexible devices

  • Wenbin Huang
  • Xingtao Yu
  • Yanhua Liu
  • Wen Qiao
  • Linsen Chen
Review Article


Recent advances in electronic and photonic devices, such as artificial skin, wearable systems, organic and inorganic light-emitting diodes, have gained considerable commercial and scientific interest in the academe and in industries. However, low-cost and high-throughput nano-manufacturing is difficult to realize with the use of traditional photolithographic processes. In this review, we summarize the status and the limitations of current nanopatterning techniques for scalable and flexible functional devices in terms of working principle, resolution, and processing speed. Finally, several remaining unsolved problems in nano-manufacturing are discussed, and future research directions are highlighted.


flexible nano-manufacturing flexible devices nanofabrication scalability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge financial support given by the National Natural Science Foundation of China (Grant Nos. 91323303, 61401292, 61405133, 61505131, and 61575135), the Jiangsu Science and Technology Department (Grant Nos. BK20140350, BK20140348, and BK20150309), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20133201120027), the China Postdoctoral Science Foundation (Grant No. 2015M571816), and the project of the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.


  1. 1.
    Fan X, Zhang H, Liu S, et al. NIL—A low-cost and high-throughput MEMS fabrication method compatible with IC manufacturing technology. Microelectronics Journal, 2006, 37(2): 121–126CrossRefGoogle Scholar
  2. 2.
    Yu Z, Duong B, Abbitt D, et al. Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Advanced Materials, 2013, 25(24): 3302–3306CrossRefGoogle Scholar
  3. 3.
    Guo L J. Nanoimprint lithography: Methods and material requirements. Advanced Materials, 2007, 19(4): 495–513CrossRefGoogle Scholar
  4. 4.
    Gates B D, Xu Q, Stewart M, et al. New approaches to nanofabrication: Molding, printing, and other techniques. Chemical Reviews, 2005, 105(4): 1171–1196CrossRefGoogle Scholar
  5. 5.
    Guo L J. Recent progress in nanoimprint technology and its applications. Journal of Physics D: Applied Physics, 2004, 37(11): R123–R141CrossRefGoogle Scholar
  6. 6.
    Kazemi A, He X, Alaie S, et al. Large-area semiconducting graphene nanomesh tailored by interferometric lithography. Scientific Reports, 2015, 5: 11463CrossRefGoogle Scholar
  7. 7.
    Checco A, Rahman A, Black C T. Robust superhydrophobicity in large-area nanostructured surfaces defined by block-copolymer self assembly. Advanced Materials, 2014, 26(6): 886–891CrossRefGoogle Scholar
  8. 8.
    Gale M T, Rossi M, Pedersen J, et al. Fabrication of continuousrelief micro-optical elements by direct laser writing in photoresists. Optical Engineering, 1994, 33(11): 3556–3566CrossRefGoogle Scholar
  9. 9.
    Hon K, Li L, Hutchings I. Direct writing technology—Advances and developments. CIRP Annals—Manufacturing Technology, 2008, 57(2): 601–620CrossRefGoogle Scholar
  10. 10.
    Biswas A, Bayer I S, Biris A S, et al. Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science, 2012, 170(1–2): 2–27CrossRefGoogle Scholar
  11. 11.
    Gratton S E A, Williams S S, Napier M E, et al. The pursuit of a scalable nanofabrication platform for use in material and life science applications. Accounts of Chemical Research, 2008, 41(12): 1685–1695CrossRefGoogle Scholar
  12. 12.
    Tseng A A, Jou S, Notargiacomo A, et al. Recent developments in tip-based nanofabrication and its roadmap. Journal of Nanoscience and Nanotechnology, 2008, 8(5): 2167–2186CrossRefGoogle Scholar
  13. 13.
    Supran G J, Shirasaki Y, Song K W, et al. QLEDs for displays and solid-state lighting. MRS Bulletin, 2013, 38(09): 703–711CrossRefGoogle Scholar
  14. 14.
    Lim S K, Perrier S, Neto C. Patterned chemisorption of proteins by thin polymer film dewetting. Soft Matter, 2013, 9(9): 2598–2602CrossRefGoogle Scholar
  15. 15.
    Benor A, Hoppe A, Wagner V, et al. Microcontact printing and selective surface dewetting for large area electronic applications. Thin Solid Films, 2007, 515(19): 7679–7682CrossRefGoogle Scholar
  16. 16.
    Gout S, Coulm J, Léonard D, et al. Silver localization on polyimide using microcontact printing and electroless metallization. Applied Surface Science, 2014, 307: 716–723CrossRefGoogle Scholar
  17. 17.
    Mondin G, Schumm B, Fritsch J, et al. Fabrication of micro-and submicrometer silver patterns by microcontact printing of mercaptosilanes and direct electroless metallization. Microelectronic Engineering, 2013, 104: 100–104CrossRefGoogle Scholar
  18. 18.
    King E, Xia Y, Zhao X M, et al. Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers. Advanced Materials, 1997, 9(8): 651–654CrossRefGoogle Scholar
  19. 19.
    Wan W, Qiao W, Huang W, et al. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views. Optics Express, 2016, 24(6): 6203–6212CrossRefGoogle Scholar
  20. 20.
    Park S R, Kwon O J, Shin D, et al. Grating micro-dot patterned light guide plates for LED backlights. Optics Express, 2007, 15(6): 2888–2899CrossRefGoogle Scholar
  21. 21.
    Lee C K, Wu J W J, Yeh S L, et al. Optical configuration and colorrepresentation range of a variable-pitch dot matrix holographic printer. Applied Optics, 2000, 39(1): 40–53CrossRefGoogle Scholar
  22. 22.
    Lu C, Lipson R. Interference lithography: A powerful tool for fabricating periodic structures. Laser & Photonics Reviews, 2010, 4 (4): 568–580CrossRefGoogle Scholar
  23. 23.
    Brueck S. Optical and interferometric lithography—Nanotechnology enablers. Proceedings of the IEEE, 2005, 93(10): 1704–1721CrossRefGoogle Scholar
  24. 24.
    Ouk Kim S, Solak H H, Stoykovich M P, et al. Epitaxial selfassembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 2003, 424(6947): 411–414CrossRefGoogle Scholar
  25. 25.
    Garcia R, Knoll A W, Riedo E. Advanced scanning probe lithography. Nature Nanotechnology, 2014, 9(8): 577–587CrossRefGoogle Scholar
  26. 26.
    Bates C M, Maher M J, Janes D W, et al. Block copolymer lithography. Macromolecules, 2014, 47(1): 2–12CrossRefGoogle Scholar
  27. 27.
    Hawker C J, Russell T P. Block copolymer lithography: Merging “bottom-up” with “top-down” processes. MRS Bulletin, 2005, 30 (12): 952–966CrossRefGoogle Scholar
  28. 28.
    Kim H C, Park S M, Hinsberg W D. Block copolymer based nanostructures: Materials, processes, and applications to electronics. Chemical Reviews, 2010, 110(1): 146–177CrossRefGoogle Scholar
  29. 29.
    Wan L, Ruiz R, Gao H, et al. The limits of lamellae-forming PS-b-PMMA block copolymers for lithography. ACS Nano, 2015, 9(7): 7506–7514CrossRefGoogle Scholar
  30. 30.
    Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5(8): 574–578CrossRefGoogle Scholar
  31. 31.
    Kooy N, Mohamed K, Pin L T, et al. A review of roll-to-roll nanoimprint lithography. Nanoscale Research Letters, 2014, 9(1): 320CrossRefGoogle Scholar
  32. 32.
    Yoshikawa H, Taniguchi J, Tazaki G, et al. Fabrication of highaspect- ratio pattern via high throughput roll-to-roll ultraviolet nanoimprint lithography. Microelectronic Engineering, 2013, 112: 273–277CrossRefGoogle Scholar
  33. 33.
    Ahn S H, Guo L J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Advanced Materials, 2008, 20(11): 2044–2049CrossRefGoogle Scholar
  34. 34.
    Ahn S H, Guo L J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano, 2009, 3(8): 2304–2310CrossRefGoogle Scholar
  35. 35.
    Ok J G, Seok Youn H, Kyu Kwak M, et al. Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Applied Physics Letters, 2012, 101(22): 223102CrossRefGoogle Scholar
  36. 36.
    Ruiz R, Kang H, Detcheverry F A, et al. Density multiplication and improved lithography by directed block copolymer assembly. Science, 2008, 321(5891): 936–939CrossRefGoogle Scholar
  37. 37.
    Seltmann R, Doleschal W, Gehner A, et al. New system for fast submicron optical direct writing. Microelectronic Engineering, 1996, 30(1–4): 123–127CrossRefGoogle Scholar
  38. 38.
    Zhang A P, Qu X, Soman P, et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Advanced Materials, 2012, 24(31): 4266–4270CrossRefGoogle Scholar
  39. 39.
    Scholder O, Jefimovs K, Shorubalko I, et al. Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps. Nanotechnology, 2013, 24(39): 395301CrossRefGoogle Scholar
  40. 40.
    Tseng A A. Recent developments in nanofabrication using focused ion beams. Small, 2005, 1(10): 924–939CrossRefGoogle Scholar
  41. 41.
    Utke I, Moshkalev S, Russell P. Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications. New York: Oxford University Press, 2012Google Scholar
  42. 42.
    Watt F, Bettiol A, Van Kan J, et al. Ion beam lithography and nanofabrication: A review. International Journal of Nanoscience, 2005, 04(03): 269–286CrossRefGoogle Scholar
  43. 43.
    Piqué A, Chrisey D B, Auyeung R C Y, et al. A novel laser transfer process for direct writing of electronic and sensor materials. Applied Physics A: Materials Science & Processing, 1999, 69(Suppl): S279–S284CrossRefGoogle Scholar
  44. 44.
    Shir D, Liao H, Jeon S, et al. Three-dimensional nanostructures formed by single step, two-photon exposures through elastomeric Penrose quasicrystal phase masks. Nano Letters, 2008, 8(8): 2236–2244CrossRefGoogle Scholar
  45. 45.
    Singer J P, Lee J H, Kooi S E, et al. Rapid fabrication of 3D terahertz split ring resonator arrays by novel single-shot direct write focused proximity field nanopatterning. Optics Express, 2012, 20(10): 11097–11108CrossRefGoogle Scholar
  46. 46.
    Bloomstein T, Marchant M F, Deneault S, et al. 22-nm immersion interference lithography. Optics Express, 2006, 14(14): 6434–6443CrossRefGoogle Scholar
  47. 47.
    Quiñónez F, Menezes J, Cescato L, et al. Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography. Optics Express, 2006, 14(11): 4873–4879CrossRefGoogle Scholar
  48. 48.
    Escuti M J, Crawford G P. Holographic photonic crystals. Optical Engineering, 2004, 43(9): 1973–1987CrossRefGoogle Scholar
  49. 49.
    Lu Y T, Chi S. Compact, reliable asymmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting applications. Optik-International Journal for Light and Electron Optics, 2003, 114(4): 161–167CrossRefGoogle Scholar
  50. 50.
    Wan W, Huang W, Pu D, et al. High performance organic distributed Bragg reflector lasers fabricated by dot matrix holography. Optics Express, 2015, 23(25): 31926–31935CrossRefGoogle Scholar
  51. 51.
    Tseng A A, Notargiacomo A, Chen T P. Nanofabrication by scanning probe microscope lithography: A review. Journal of Vacuum Science & Technology B, 2005, 23(3): 877CrossRefGoogle Scholar
  52. 52.
    Cheong L L, Paul P, Holzner F, et al. Thermal probe maskless lithography for 27.5 nm half-pitch Si technology. Nano Letters, 2013, 13(9): 4485–4491CrossRefGoogle Scholar
  53. 53.
    Kim B H, Kim J Y, Kim S O. Directed self-assembly of block copolymers for universal nanopatterning. Soft Matter, 2013, 9(10): 2780–2786CrossRefGoogle Scholar
  54. 54.
    Gu W, Xu J, Kim J K, et al. Solvent-assisted directed self-assembly of spherical microdomain block copolymers to high areal density arrays. Advanced Materials, 2013, 25(27): 3677–3682CrossRefGoogle Scholar
  55. 55.
    Sivaniah E, Matsubara S, Zhao Y, et al. Symmetric diblock copolymer thin films on rough substrates: Microdomain periodicity in pure and blended films. Macromolecules, 2008, 41(7): 2584–2592CrossRefGoogle Scholar
  56. 56.
    Jeong S J, Moon H S, Kim B H, et al. Ultralarge-area block copolymer lithography enabled by disposable photoresist prepatterning. ACS Nano, 2010, 4(9): 5181–5186CrossRefGoogle Scholar
  57. 57.
    Jeong S J, Kim J E, Moon H S, et al. Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement. Nano Letters, 2009, 9(6): 2300–2305CrossRefGoogle Scholar
  58. 58.
    Sun Z, Chen Z, Zhang W, et al. Directed self-assembly of poly (2-vinylpyridine)-b-polystyrene-b-poly (2-vinylpyridine) triblock copolymer with sub-15 nm spacing line patterns using a nanoimprinted photoresist template. Advanced Materials, 2015, 27 (29): 4364–4370CrossRefGoogle Scholar
  59. 59.
    Cushen J, Wan L, Blachut G, et al. Double-patterned sidewall directed self-assembly and pattern transfer of sub-10 nm PTMSS-b- PMOST. ACS Applied Materials & Interfaces, 2015, 7(24): 13476–13483CrossRefGoogle Scholar
  60. 60.
    Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymers. Applied Physics Letters, 1995, 67(21): 3114–3116CrossRefGoogle Scholar
  61. 61.
    Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25- nanometer resolution. Science, 1996, 272(5258): 85–87CrossRefGoogle Scholar
  62. 62.
    Chou S Y, Krauss P R, Zhang W, et al. Sub-10 nm imprint lithography and applications. Journal of Vacuum Science & Technology B, 1997, 15(6): 2897–2904CrossRefGoogle Scholar
  63. 63.
    Lan H, Ding Y, Liu H, et al. Mold deformation in soft UVnanoimprint lithography. Science in China Series E: Technological Sciences, 2009, 52(2): 294–302CrossRefGoogle Scholar
  64. 64.
    Ruchhoeft P, Colburn M, Choi B, et al. Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography. Journal of Vacuum Science & Technology B, 1999, 17(6): 2965–2969CrossRefGoogle Scholar
  65. 65.
    Resnick D, Dauksher W, Mancini D, et al. Imprint lithography for integrated circuit fabrication. Journal of Vacuum Science & Technology B, 2003, 21(6): 2624–2631CrossRefGoogle Scholar
  66. 66.
    Dauksher W, Nordquist K, Mancini D, et al. Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates. Journal of Vacuum Science & Technology B, 2002, 20(6): 2857–2861CrossRefGoogle Scholar
  67. 67.
    Kim H J, Almanza-Workman M, Garcia B, et al. Roll-to-roll manufacturing of electronics on flexible substrates using selfaligned imprint lithography (SAIL). Journal of the Society for Information Display, 2009, 17(11): 963–970CrossRefGoogle Scholar
  68. 68.
    Sreenivasan S, McMackin I, Xu F, et al. Using reverse-tone bilayer etch in ultraviolet nanoimprint lithography. MICRO, 2005, 23(1): 37–44Google Scholar
  69. 69.
    Liang X, Zhang W, Li M, et al. Electrostatic force-assisted nanoimprint lithography (EFAN). Nano Letters, 2005, 5(3): 527–530CrossRefGoogle Scholar
  70. 70.
    Hirai Y, Konishi T, Yoshikawa T, et al. Simulation and experimental study of polymer deformation in nanoimprint lithography. Journal of Vacuum Science & Technology B, 2004, 22(6): 3288–3293CrossRefGoogle Scholar
  71. 71.
    Li X, Shao J, Tian H, et al. Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary forcedriven UV-imprinting. Journal of Micromechanics and Microengineering, 2011, 21(6): 065010CrossRefGoogle Scholar
  72. 72.
    Li X, Tian H, Wang C, et al. Electrowetting assisted air detrapping in transfer micromolding for difficult-to-mold microstructures. ACS Applied Materials & Interfaces, 2014, 6(15): 12737–12743CrossRefGoogle Scholar
  73. 73.
    Tian H, Shao J, Ding Y, et al. Electrohydrodynamic micro-/nanostructuring processes based on prepatterned polymer and prepatterned template. Macromolecules, 2014, 47(4): 1433–1438CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wenbin Huang
    • 1
    • 2
  • Xingtao Yu
    • 1
  • Yanhua Liu
    • 1
    • 2
  • Wen Qiao
    • 1
    • 2
  • Linsen Chen
    • 1
    • 2
  1. 1.College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouChina
  2. 2.Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of ChinaSoochow UniversitySuzhouChina

Personalised recommendations