Skip to main content

Advertisement

Log in

Signal recovery under mutual incoherence property and oracle inequalities

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We consider the signal recovery through an unconstrained minimization in the framework of mutual incoherence property. A sufficient condition is provided to guarantee the stable recovery in the noisy case. Furthermore, oracle inequalities of both sparse signals and non-sparse signals are derived under the mutual incoherence condition in the case of Gaussian noises. Finally, we investigate the relationship between mutual incoherence property and robust null space property and find that robust null space property can be deduced from the mutual incoherence property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bickel P J, Ritov Y, Tsybakov A B. Simultaneous analysis of Lasso and Dantzig selector. Ann Statist, 2009, 37: 1705–1732

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai T T, Wang L, Xu G. Stable recovery of sparse signals and an oracle inequality. IEEE Trans Inform Theory, 2010, 56: 3516–3522

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai T T, Xu G, Zhang J. On recovery of sparse signals via ℓ1 minimization. IEEE Trans Inform Theory, 2009, 55: 3388–3397

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai T T, Zhang A. Compressed sensing and affine rank minimization under restricted isometry. IEEE Trans Inform Theory, 2013, 61: 3279–3290

    MathSciNet  MATH  Google Scholar 

  5. Cai T T, Zhang A. Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans Inform Theory, 2014, 60: 122–132

    Article  MathSciNet  MATH  Google Scholar 

  6. Candès E J, Plan Y. Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. IEEE Trans Inform Theory, 2011, 57: 2342–2359

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math, 2006, 59: 1207–1223

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès E J, Tao T. Decoding by linear programming. IEEE Trans Inform Theory, 2005, 51: 4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  9. Candès E J, Tao T. Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inform Theory, 2006, 52: 5406–5425

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès E J, Tao T. The Dantzig selector: Statistical estimation when p is much larger than n: Ann Statist, 2007, 33: 2313–2351

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM J Sci Comput, 1998, 20: 33–61

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen A, Dahmen W, DeVore R. Compressed sensing and best k-term approximation. J Amer Math Soc, 2009, 22: 211–231

    Article  MathSciNet  MATH  Google Scholar 

  13. De Castro Y. A remark on the Lasso and the Dantzig selector. Statist Probab Lett, 2013, 83: 304–314

    Article  MathSciNet  MATH  Google Scholar 

  14. Donoho D L. Compressed sensing. IEEE Trans Inform Theory, 2006, 52: 1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  15. Donoho D L, Elad M. Optimally sparse representations in general (nonorthogonal) dictionaries via ℓ1 minimization. Proc Natl Acad Sci USA, 2003, 100: 2197–2202

    Article  MathSciNet  MATH  Google Scholar 

  16. Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans Inform Theory, 2005, 52: 6–18

    Article  MathSciNet  MATH  Google Scholar 

  17. Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Trans Inform Theory, 2001, 47: 2845–2862

    Article  MathSciNet  MATH  Google Scholar 

  18. Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81: 425–455

    Article  MathSciNet  MATH  Google Scholar 

  19. Elad M, Milanfar P, Rubinstein R. Analysis versus synthesis in signal priors. Inverse Problems, 2007, 23: 947–968

    Article  MathSciNet  MATH  Google Scholar 

  20. Erickson S, Sabatti C. Empirical Bayes estimation of a sparse vector of gene expression changes. Stat Appl Genet Mol Biol, 2005, 4: 1–27

    Article  MathSciNet  MATH  Google Scholar 

  21. Foucart S. Stability and robustness of ℓ1-minimizations with Weibull matrices and redundant dictionaries. Linear Algebra Appl, 2014, 441: 4–21

    Article  MathSciNet  MATH  Google Scholar 

  22. Fourcat S. Flavors of compressive sensing. In: Fasshauer G E, Schumaker L L, eds. International Conference Approximation Theory, Approximation Theory XV, San Antonio. 2016, 61–104

    Google Scholar 

  23. Foucart S, Rauhut H. A Mathematical Introduction to Compressive Sensing, Applied and Numerical Harmonic Analysis Series. New York: Birkhäuser, 2013

    MATH  Google Scholar 

  24. Herman M, Strohmer T. High-resolution radar via compressed sensing. IEEE Trans. Signal Process., 2009, 57: 2275–2284

    Article  MathSciNet  MATH  Google Scholar 

  25. Li P, Chen W G. Signal recovery under cumulative coherence. J Comput Appl Math, 2019, 346: 399–417

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin J H, Li S. Sparse recovery with coherent tight frames via analysis Dantzig selector and analysis LASSO. Appl Comput Harmon Anal, 2014, 37: 126–139

    Article  MathSciNet  MATH  Google Scholar 

  27. Lustig M. Donoho D L, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 2007, 58: 1182–1195

    Article  Google Scholar 

  28. Parvaresh F, Vikalo H, Misra S, Hassibi B. Recovering sparse signals using sparse measurement matrices in compressed DNA microarrays. IEEE J Sel Top Signal Process, 2008, 2: 275–285

    Article  Google Scholar 

  29. Schnass K, Vandergheynst P. Dictionary preconditioning for greedy algorithms. IEEE Trans Signal Process, 2008, 56: 1994–2002

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen Y, Han B, Braverman E. Stable recovery of analysis based approaches. Appl Comput Harmon Anal, 2015, 39: 161–172

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun Q. Sparse approximation property and stable recovery of sparse signals from noisy measurements. IEEE Trans Signal Process, 2011, 59: 5086–5090

    Article  MathSciNet  MATH  Google Scholar 

  32. Tan Z, Eldar Y C, Beck A, Nehorai A. Smoothing and decomposition for analysis sparse recovery. IEEE Trans Signal Process, 2014, 62: 1762–1774

    Article  MathSciNet  MATH  Google Scholar 

  33. Tauböck G, Hlawatsch F, Eiwen D, Rauhut H. Compressive estimation of doubly selective channels in multicarrier systems: leakage effects and sparsity-enhancing processing. IEEE J Sel Top Signal Process, 2010, 4: 255–271

    Article  Google Scholar 

  34. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B, 1996, 58: 267–288

    MathSciNet  MATH  Google Scholar 

  35. Tropp J A. Greed is good: algorithmic results for sparse approximation. IEEE Trans Inform Theory, 2004, 50: 2231–2242

    Article  MathSciNet  MATH  Google Scholar 

  36. Tseng P. Further results on a stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans Inform Theory, 2009, 55: 888–899

    Article  MathSciNet  MATH  Google Scholar 

  37. Vasanawala S, Alley M, Hargreaves B, Barth R, Pauly J, Lustig M. Improved pediatric MR imaging with compressed sensing. Radiology, 2010, 256: 607–616

    Article  Google Scholar 

  38. Wojtaszczyk P. Stability and instance optimality for Gaussian measurements in compressed sensing. Found Comput Math, 2010, 10: 1–13

    Article  MathSciNet  MATH  Google Scholar 

  39. Xia Y, Li S. Analysis recovery with coherent frames and correlated measurements. IEEE Trans Inform Theory, 2016, 62: 6493–6507

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang H, Yan M, Yin W. One condition for solution uniqueness and robustness of both l 1-synthesis and l 1-analysis minimizations. Adv Comput Math, 2016, 42: 1381–1399

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang R, Li S. A proof of conjecture on restricted isometry property constants δ tk (0 < t < 4/3). IEEE Trans Inform Theory, 2018, 65: 1699–1705

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11871109), NSAF (Grant No. U1830107), and the Science Challenge Project (TZ2018001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Chen, W. Signal recovery under mutual incoherence property and oracle inequalities. Front. Math. China 13, 1369–1396 (2018). https://doi.org/10.1007/s11464-018-0733-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-018-0733-9

Keywords

MSC

Navigation