Skip to main content
Log in

Global attractiveness and exponential decay of neutral stochastic functional differential equations driven by fBm with Hurst parameter less than 1/2

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We are concerned with a class of neutral stochastic functional differential equations driven by fractional Brownian motion (fBm) in the Hilbert space. We obtain the global attracting sets of this kind of equations driven by fBm with Hurst parameter ћ ∈ (0, 1/2). Especially, some sufficient conditions which ensure the exponential decay in the p-th moment of the mild solution of the considered equations are obtained. In the end, one example is given to illustrate the feasibility and effectiveness of results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boudrahem S, Rougier P R. Relation between postural control assessment with eyes open and centre of pressure visual feed back effects in healthy individuals. Exp Brain Res, 2009, 195: 145–152

    Article  Google Scholar 

  2. Boufoussi B, Hajji S. Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Statist Probab Lett, 2012, 82(8): 1549–1558

    Article  MathSciNet  MATH  Google Scholar 

  3. Boufoussi B, Hajji S. Transportation inequalities for neutral stochastic differential equations driven by fractional Brownian motion with Hurst parameter lesser than 1=2. Mediterr J Math, 2017, 14: 192

    Article  MathSciNet  MATH  Google Scholar 

  4. Caraballo T, Garrido-Atienza M J, Taniguchi T. The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal, 2011, 74: 3671–3684

    Article  MathSciNet  MATH  Google Scholar 

  5. Comte F, Renault E. Long memory continuous time models. J Econometrics, 1996, 73: 101–149

    Article  MathSciNet  MATH  Google Scholar 

  6. de la Fuente I M, Perez-Samartin A L, Martinez L, Garcia M A, Vera-Lopez A. Long-range correlations in rabbit brain neural activity. Ann Biomed Eng, 2006, 34(2): 295–299

    Article  Google Scholar 

  7. Duncan T E, Maslowski B, Pasik-Duncan B. Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch Dyn, 2002, 2: 225–250

    Article  MathSciNet  MATH  Google Scholar 

  8. Hale J K, Lunel S M. Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993

    Book  MATH  Google Scholar 

  9. Kolmanovskii V B, Myshkis A. Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, 1999

    Book  MATH  Google Scholar 

  10. Lakhel El H. Controllability of neutral stochastic functional integro-differential equations driven by fractional Brownian motion. Stoch Anal Appl, 2016, 34(3): 427–440

    Article  MathSciNet  MATH  Google Scholar 

  11. Lakhel El H. Controllability of neutral functional differential equations driven by fractional Brownian motion with infinite delay. Nonlinear Dyn Syst Theory, 2017, 17(3): 291–302

    MathSciNet  MATH  Google Scholar 

  12. Lakhel El H, McKibben M A. Existence of solutions for fractional neutral functional differential equations driven by fBm with infinite delay. Stochastics, 2018, 90(3): 313–329

    Article  MathSciNet  Google Scholar 

  13. Li D S, Xu D Y. Attracting and quasi-invariant sets of stochastic neutral partial functional differential equations. Acta Math Sci Ser B Engl Ed, 2013, 33: 578–588

    Article  MathSciNet  MATH  Google Scholar 

  14. Li Z. Global attractiveness and quasi-invariant sets of impulsive neutral stochastic functional differential equations driven by fBm. Neurocomputing, 2016, 177: 620–627

    Article  Google Scholar 

  15. Li Z, Luo J W. Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion. Front Math China, 2015, 10(2): 303–321

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu K, Li Z. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive ff-stable processes. Discrete Contin Dyn Syst Ser B, 2016, 21: 3551–3573

    Article  MathSciNet  MATH  Google Scholar 

  17. Mandelbrot B B, Van Ness J. Fractional Brownian motion, fractional noises and applications. SIAM Rev, 1968, 10: 422–437

    Article  MathSciNet  MATH  Google Scholar 

  18. Mao X R. Stochastic Differential Equations and Applications. 2nd ed. Oxford: Woodhead Publishing, 2007

    MATH  Google Scholar 

  19. Maslowski B, Nualart D. Evolution equations driven by a fractional Brownian motion. J Funct Anal, 2003, 202: 277–305

    Article  MathSciNet  MATH  Google Scholar 

  20. Mohammed S-E A. Stochastic Functional Differential Equations. Boston: Pitman, 1984

    MATH  Google Scholar 

  21. Nualart D. The Malliavin Calculus and Related Topics. 2nd ed. Berlin: Springer-Verlag, 2006

    MATH  Google Scholar 

  22. Pazy A. Semigroup of Linear Operators and Applications to Partial Differential Equations. New York: Spring-Verlag, 1992

    Google Scholar 

  23. Rypdal M, Rypdal K. Testing hypotheses about sun-climate complexity linking. Phys Rev Lett, 2010, 104: 128–151

    Article  Google Scholar 

  24. Salamon D. Control and Observation of Neutral Systems. Research Notes in Math, Vol 91. London: Pitman Advanced Publishing Program, 1984

    MATH  Google Scholar 

  25. Simonsen I. Measuring anti-correlations in the nordic electricity spot market by wavelets. Phys A, 2003, 322: 597–606

    Article  MATH  Google Scholar 

  26. Wang L, Li D. Impulsive-integral inequalities for attracting and quasi-invariant sets of impulsive stochastic partial differential equations with infinite delays. J Inequal Appl, 2013, 2013: 338

    Article  MathSciNet  MATH  Google Scholar 

  27. Willinger W, Leland W, Taqqu M, Wilson D. On self-similar nature of ethernet traffic. IEEE/ACM Trans Networking, 1994, 2: 1–15

    Article  Google Scholar 

  28. Wu J H. Theory and Applications of Partial Functional Differential Equations. Appl Math Sci, Vol 119. New York: Springer-Verlag, 1996

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 11571071) and the Natural Science Foundation of Hubei Province (No. 2016CFB479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Luo, J. Global attractiveness and exponential decay of neutral stochastic functional differential equations driven by fBm with Hurst parameter less than 1/2. Front. Math. China 13, 1469–1487 (2018). https://doi.org/10.1007/s11464-018-0728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-018-0728-6

Keywords

MSC

Navigation