Skip to main content
Log in

Realization of Poisson enveloping algebra

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

For a Poisson algebra, the category of Poisson modules is equivalent to the module category of its Poisson enveloping algebra, where the Poisson enveloping algebra is an associative one. In this article, for a Poisson structure on a polynomial algebra S, we first construct a Poisson algebra R, then prove that the Poisson enveloping algebra of S is isomorphic to the specialization of the quantized universal enveloping algebra of R, and therefore, is a deformation quantization of R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown K A, Gordon I. Poisson orders, symplectic reflection algebras and representation theory. J Reine Angew Math, 2003, 559: 193–216

    MathSciNet  MATH  Google Scholar 

  2. Calaque D, Felder G, Rossi C. Deformation quantization with generators and relations. J Algebra, 2011, 337: 1–12

    Article  MathSciNet  MATH  Google Scholar 

  3. Dolgushev V A. The Van den Bergh duality and the modular symmetry of a Poisson variety. Selecta Math, 2009, 14: 199–228

    Article  MathSciNet  MATH  Google Scholar 

  4. Huebschmann J. Poisson cohomology and quantization. J Reine Angew Math, 1990, 408: 57–113

    MathSciNet  MATH  Google Scholar 

  5. Kontsevich M. Deformation quantization of Poisson manifolds. Lett Math Phys, 2003, 66: 157–216

    Article  MathSciNet  MATH  Google Scholar 

  6. Lü J, Wang X, Zhuang G. Universal enveloping algebras of Poisson Hopf algebras. J Algebra, 2015, 426: 92–136

    Article  MathSciNet  MATH  Google Scholar 

  7. Lü J, Wang X, Zhuang G. Universal enveloping algebras of Poisson Ore extensions. Proc Amer Math Soc, 2015, 143: 4633–4645

    Article  MathSciNet  MATH  Google Scholar 

  8. Lü J, Wang X, Zhuang G. DG Poisson algebra and its universal enveloping algebra. Sci China Math, 2016, 59: 849–860

    Article  MathSciNet  MATH  Google Scholar 

  9. Lü J, Wang X, Zhuang G. Homological unimodularity and Calabi-Yau condition for Poisson algebras. Lett Math Phys, 2017, 107: 1715–1740

    Article  MathSciNet  MATH  Google Scholar 

  10. Oh S Q. Poisson enveloping algebras. Comm Algebra, 1999, 27: 2181–2186

    Article  MathSciNet  MATH  Google Scholar 

  11. Oh S Q, Park C G, Shin Y Y. A Poincaré-Birkhoff-Witt theorem for Poisson enveloping algebras. Comm Algebra, 2002, 30: 4867–4887

    Article  MathSciNet  MATH  Google Scholar 

  12. Penkava M, Vanhaecke P. Deformation quantization of polynomial Poisson algebras. J Algebra, 2000, 227: 365–393

    Article  MathSciNet  MATH  Google Scholar 

  13. Rinehart G. Differential forms on general commutative algebras. Trans Amer Math Soc, 1963, 108: 195–222

    Article  MathSciNet  MATH  Google Scholar 

  14. Shoikhet B. Kontsevich formality and PBW algebras. arXiv: 0708.1634

  15. Shoikhet B. The PBW property for associative algebras as an integrability conditions. Math Res Lett, 2014, 21: 1407–1434

    Article  MathSciNet  MATH  Google Scholar 

  16. Towers M. Poisson and Hochschild cohomology and the semiclassical limit. J Noncommut Geom, 2015, 9: 665–696

    Article  MathSciNet  MATH  Google Scholar 

  17. Umirbaev U. Universal enveloping algebras and universal derivations of Poisson algebras. J Algebra, 2012, 354: 77–94

    Article  MathSciNet  MATH  Google Scholar 

  18. Vancliff M. Primitive and Poisson spectra of twists of polynomial rings. Algebr Represent Theory, 1999, 3: 269–285

    Article  MathSciNet  MATH  Google Scholar 

  19. Weinstein A. The local structure of Poisson manifolds. J Differential Geom, 1982, 18: 523–557

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11771085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Wang, Y. Realization of Poisson enveloping algebra. Front. Math. China 13, 999–1011 (2018). https://doi.org/10.1007/s11464-018-0708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-018-0708-x

Keywords

MSC

Navigation