Generalized inverses of tensors via a general product of tensors

  • Lizhu Sun
  • Baodong Zheng
  • Yimin Wei
  • Changjiang Bu
Research Article
  • 6 Downloads

Abstract

We define the {i}-inverse (i = 1, 2, 5) and group inverse of tensors based on a general product of tensors. We explore properties of the generalized inverses of tensors on solving tensor equations and computing formulas of block tensors. We use the {1}-inverse of tensors to give the solutions of a multilinear system represented by tensors. The representations for the {1}-inverse and group inverse of some block tensors are established.

Keywords

Tensor generalized inverse tensor equation general product of tensor 

MSC

15A09 15A69 65F20 65F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are very grateful to the referees for their valuable suggestions, which have considerably improved the paper. Yimin Wei was supported by the International Cooperation Project of Shanghai Municipal Science and Technology Commission (Grant No. 16510711200) and the National Natural Science Foundation of China (Grant No. 11771099); Changjiang Bu was supported by the National Natural Science Foundation of China (Grant No. 11371109).

References

  1. 1.
    Behera R, Mishra D. Further results on generalized inverses of tensors via Einstein product. Linear Multilinear Algebra, 2017, 65(8): 1662–1682MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beltrán C, Shub M. On the geometry and topology of the solution variety for polynomial system solving. Found Comput Math, 2017, 12(6): 719–763MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ben-Isral A, Greville T N E. Generalized Inverse: Theory and Applications. New York: Wiley-Interscience, 1974Google Scholar
  4. 4.
    Brazell M, Li N, Navasca C, Tamon C. Solving multilinear systems via tensor inversion. SIAM J Matrix Anal Appl, 2013, 34(2): 542–570MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bu C, Wang W, Sun L, Zhou J. Minimum (maximum) rank of sign pattern tensors and sign nonsingular tensors. Linear Algebra Appl, 2015, 483: 101–114MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bu C, Wei Y P, Sun L, Zhou J. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl, 2015, 480: 168–175MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bu C, Zhang X, Zhou J, Wang W, Wei Y. The inverse, rank and product of tensors. Linear Algebra Appl, 2014, 446: 269–280MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Campbell S L. The Drazin inverse and systems of second order linear differential equations. Linear Multilinear Algebra, 1983, 14: 195–198CrossRefMATHGoogle Scholar
  9. 9.
    Campbell S L, Meyer C D. Generalized Inverses of Linear Transformations. London: Pitman, 1979MATHGoogle Scholar
  10. 10.
    Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32(3): 806–819MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Che M, Bu C, Qi L, Wei Y. Nonnegative tensors revisited: plane stochastic tensors. Linear Multilinear Algebra, https://doi.org/10.1080/03081087.2018.1453469Google Scholar
  12. 12.
    Chen J, Saad Y. On the tensor SVD and the optimal low rank orthogonal approximation of tensors. SIAM J Matrix Anal Appl, 2009, 30(4): 1709–1734MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chen Y, Qi L, Zhang X. The elder vector of a Laplacian tensor for hypergraph partitioning. SIAM J Sci Comput, 2017, 39(6): A2508–A2537CrossRefMATHGoogle Scholar
  14. 14.
    Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ding W, Wei Y. Solving multi-linear systems with M-tensors. J Sci Comput, 2016, 68: 689–715MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fan Z, Deng C, Li H, Bu C. Tensor representations of quivers and hypermatrices. PreprintGoogle Scholar
  17. 17.
    Hartwig R E, Shoaf J M. Group inverse and Drazin inverse of bidiagonal and triangular Toeplitz matrices. Aust J Math, 1977, 24(A): 10–34MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hu S, Huang Z, Ling C, Qi L. On determinants and eigenvalue theory of tensors. J Symbolic Comput, 2013, 50: 508–531MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Huang S, Zhao G, Chen M. Tensor extreme learning design via generalized Moore-Penrose inverse and triangular type-2 fuzzy sets. Neural Comput Appl, https://doi.org/10.1007/s00521-018-3385-5Google Scholar
  20. 20.
    Hunter J J. Generalized inverses of Markovian kernels in terms of properties of the Markov chain. Linear Algebra Appl, 2014, 447: 38–55MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ji J, Wei Y. Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product. Front Math China, 2017, 12(6): 1319–1337MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ji J, Wei Y. The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput Math Appl, https://doi.org/10.1016/j.camwa.2018.02.006Google Scholar
  23. 23.
    Kirkland S J, Neumann M, Shader B L. On a bound on algebraic connectivity: the case of equality. Czechoslovak Math J, 1998, 48: 65–76MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kroonenberg P M. Applied Multiway Data Analysis. New York: Wiley-Interscience, 2008CrossRefMATHGoogle Scholar
  25. 25.
    Liu W, Li W. On the inverse of a tensor. Linear Algebra Appl, 2016, 495: 199–205MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lu H, Plataniotis K N, Venetsanopoulos A. Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data. New York: CRC Press, 2013Google Scholar
  27. 27.
    Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Qi L, Luo Z. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017CrossRefMATHGoogle Scholar
  29. 29.
    Shao J. A general product of tensors with applications. Linear Algebra Appl, 2013, 439: 2350–2366MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Shao J, You L. On some properties of three different types of triangular blocked tensors. Linear Algebra Appl, 2016, 511: 110–140MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Sidiropoulos N D, Lathauwer L D, Fu X, Huang K, Papalexakis E E, Faloutsos C. Tensor decomposition for signal processing and machine learning. IEEE Trans Signal Process, 2017, 65(13): 3551–3582MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sun L, Wang W, Zhou J, Bu C. Some results on resistance distances and resistance matrices. Linear Multilinear Algebra, 2015, 63(3): 523–533MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sun L, Zheng B, Bu C, Wei Y. Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra, 2016, 64(4): 686–698MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Wei Y. Generalized inverses of matrices. In: Hogben L, ed. Handbook of Linear Algebra. 2nd ed. Boca Raton: Chapman and Hall/CRC, 2014, Chapter 27Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lizhu Sun
    • 1
  • Baodong Zheng
    • 2
  • Yimin Wei
    • 3
  • Changjiang Bu
    • 1
  1. 1.College of ScienceHarbin Engineering UniversityHarbinChina
  2. 2.School of ScienceHarbin Institute of TechnologyHarbinChina
  3. 3.School of Mathematical Sciences, Shanghai Key Laboratory of Contemporary Applied MathematicsFudan UniversityShanghaiChina

Personalised recommendations