Frontiers of Mathematics in China

, Volume 13, Issue 4, pp 763–777 | Cite as

Finite p-groups whose non-normal subgroups have few orders

  • Lijian An
Research Article


Suppose that G is a finite p-group. If G is not a Dedekind group, then G has a non-normal subgroup. We use pM(G) and pm(G) to denote the maximum and minimum of the orders of the non-normal subgroups of G; respectively. In this paper, we classify groups G such that M(G) < 2m(G)‒1: As a by-product, we also classify p-groups whose orders of non-normal subgroups are pk and pk+1.


Finite p-groups meta-hamiltonian p-groups non-normal subgroups 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11471198, 11771258).


  1. 1.
    An L, Li L, Qu H, Zhang Q. Finite p-groups with a minimal non-abelian subgroup of index p (II). Sci China Math, 2014, 57: 737–753MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    An L, Zhang Q. Finite metahamiltonian p-groups. J Algebra, 2015, 442: 23–35MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berkovich Y. Groups of Prime Power Order, Vol. 1. Berlin: Walter de Gruyter, 2008zbMATHGoogle Scholar
  4. 4.
    Fang X, An L. The classification of finite metahamiltonian p-groups. 1310.5509v2Google Scholar
  5. 5.
    Passman D S. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352–370MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Rédei L. Das schiefe Produkt in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören (German). Comment Math Helvet, 1947, 20: 225–264CrossRefzbMATHGoogle Scholar
  7. 7.
    Xu M, An L, Zhang Q. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements. J Algebra, 2008, 319: 3603–3620MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zhang Q, Guo X, Qu H, Xu M. Finite group which have many normal subgroups. J Korean Math Soc, 2009, 46(6): 1165–1178MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zhang Q, Li X, Su M. Finite p-groups whose nonnormal subgroups have orders at most p 3: Front Math China, 2014, 9(5): 1169–1194Google Scholar
  10. 10.
    Zhang Q, Su M. Finite 2-groups whose nonnormal subgroups have orders at most 23: Front Math China, 2012, 7(5): 971–1003Google Scholar
  11. 11.
    Zhang Q, Zhao L, Li M, Shen Y. Finite p-groups all of whose subgroups of index p 3 are abelian. Commun Math Stat, 2015, 3: 69–162MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanxi Normal UniversityLinfenChina

Personalised recommendations