Skip to main content
Log in

Analyses of geographical observations in the Heihe River Basin: Perspectives from complexity theory

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

Since 2005, dozens of geographical observational stations have been established in the Heihe River Basin (HRB), and by now a large amount of meteorological, hydrological, and ecological observations as well as data pertaining to water resources, soil and vegetation have been collected. To adequately analyze these available data and data to be further collected in future, we present a perspective from complexity theory. The concrete materials covered include a presentation of adaptive multiscale filter, which can readily determine arbitrary trends, maximally reduce noise, and reliably perform fractal and multifractal analysis, and a presentation of scale-dependent Lyapunov exponent (SDLE), which can reliably distinguish deterministic chaos from random processes, determine the error doubling time for prediction, and obtain the defining parameters of the process examined. The adaptive filter is illustrated by applying it to obtain the global warming trend and the Atlantic multidecadal oscillation from sea surface temperature data, and by applying it to some variables collected at the HRB to determine diurnal cycle and fractal properties. The SDLE is illustrated to determine intermittent chaos from river flow data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral L A N, Goldberger A L, Ivanov P C et al., 1998. Scale-independent measures and pathologic cardiac dynamics. Physical Review Letters, 81(1): 2388–2391.

    Article  Google Scholar 

  • Anderson P L, Meerschaert M M, 1998. Modeling river flows with heavy tails. Water Resources Research, 34: 2271–2280.

    Article  Google Scholar 

  • Bernaola-Galvan P, Ivanov P C, Amaral L A N et al., 2001. Scale invariance in the nonstationarity of human heart rate. Physical Review Letters, 87(16): 168105.

    Article  Google Scholar 

  • Bowers M C, Gao J, Tung W, 2013. Long-range correlations in tree ring chronologies of the USA: Variation within and across species. Geophysical Research Letters, 40: 568–572. doi: https://doi.org/10.1029/2012GL054011

    Article  Google Scholar 

  • Bowers M C, Tung W, Gao J, 2012. On the distributions of seasonal river flows: Lognormal or power law? Water Resources Research, 48: W05536. doi: https://doi.org/10.1029/2011WR011308.

    Article  Google Scholar 

  • Box G E P, Jenkins G M, 1976. Time Series Analysis: Forecasting and Control. 2nd ed. San Francisco: Holden-Day.

    Google Scholar 

  • Chen Y, Ding M, Kelso J, 1997. Long memory processes (1/fa Type) in human coordination. Physical Review Letters, 79(22): 4501–4504.

    Article  Google Scholar 

  • Cheng G, Zhao W, Feng Z et al., 2014. Integrated study of the water-ecosystem-economy in the Heihe River Basin. National Science Review, 1(3): 413–428.

    Article  Google Scholar 

  • Collins J J, Luca C J D, 1994. Random walking during quiet standing. Physical Review Letters, 73(5): 764–767.

    Article  Google Scholar 

  • Cox D R, 1984. Long-range dependence: A review. In: David H A, David H T. Statistics: An appraisal. Ames, Iowa: The Iowa State University Press, 55–74

    Google Scholar 

  • De Domenico M, Latora V, 2011. Scaling and universality in river flow dynamics. Europhysics Letters, 94(5): 58002. doi: https://doi.org/10.1209/0295-5075/94/58002.

    Article  Google Scholar 

  • Evensen G, 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. Journal of Geophysical Research, 99(C5): 10143–10162.

    Google Scholar 

  • Evensen G, 2007. Data Assimilation, the Ensemble Kalman Filter. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Feigenbaum M J, 1983. Universal behavior in nonlinear systems. Physica D: Nonlinear Phenomena, 7: 16–39.

    Article  Google Scholar 

  • Feng Q, Endo K, Cheng G, 2001. Towards sustainable development of the environmentally degraded arid rivers of China: A case study from Tarim River. Environmental Geology, 41: 229–238.

    Article  Google Scholar 

  • Fraser A, Swinney H, 1986. Independent coordinates for strange attractors from mutual information. Physical Review A, 33: 1134–1140.

    Article  Google Scholar 

  • Frisch U, 1995. Turbulence: The Legacy of A.N. Kolmogorov. New York: Cambridge University Press.

    Book  Google Scholar 

  • Gao J, Billock V, Merk I et al., 2006a. Inertia and memory in ambiguous visual perception. Cognitive Processing, 7: 105–112.

    Article  Google Scholar 

  • Gao J, Cao Y, Tung W et al., 2007. Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond. Hoboken, NJ: John Wiley & Sons, Inc.

    Book  Google Scholar 

  • Gao J, Chen C C, Hwang S K et al., 1999a. Noise-induced chaos. International Journal of Modern Physics B, 13(28): 3283–3305.

    Article  Google Scholar 

  • Gao J, Fang P, Liu F, 2017. Empirical scaling law connecting persistence and severity of global terrorism. Physica A: Statistical Mechanics and Its Applications, 482: 74–86.

    Article  Google Scholar 

  • Gao J, Hu J, Mao X et al., 2012a. Culturomics meets random fractal theory: Insights into long-range correlations of social and natural phenomena over the past two centuries. Journal of the Royal Society Interface, 9(73): 1956–1964.

    Article  Google Scholar 

  • Gao J, Hu J, Mao X et al., 2012b. Detecting low-dimensional chaos by the “noise titration” technique: Possible problems and remedies. Chaos, Solitons, & Fractals, 45: 213–223.

    Article  Google Scholar 

  • Gao J, Hu J, Tung W et al., 2006b. Assessment of long range correlation in time series: How to avoid pitfalls. Physical Review E, 73: 016117. doi: https://doi.org/10.1103/PhysRevE.73.016117.

    Article  Google Scholar 

  • Gao J, Hu J, Tung W et al., 2006c. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Physical Review E, 74: 066204. doi: https://doi.org/10.1103/PhysRevE.74.066204.

    Article  Google Scholar 

  • Gao J, Hu J, Tung W, 2009. Quantifying dynamical predictability: The pseudo-ensemble approach. Chinese Annals of Mathematics, Series B, 30(5): 569–588.

    Article  Google Scholar 

  • Gao J, Hu J, Tung W et al., 2011a. Multiscale analysis of economic time series by scale-dependent Lyapunov exponent. Quantitative Finance, 13(2): 265–274.

    Article  Google Scholar 

  • Gao J, Hu J, Tung W, 2011b. Facilitating joint chaos and fractal analysis of biosignals through nonlinear adaptive filtering. PLoS One, 6(9): e24331. doi: https://doi.org/10.1371/journal.pone.0024331.

    Article  Google Scholar 

  • Gao J, Hu J, Tung W, 2011c. Complexity measures of brain wave dynamics. Cognitive Neurodynamics, 5: 171–182.

    Article  Google Scholar 

  • Gao J, Hu J, Tung W et al., 2012c. Multiscale analysis of physiological data by scale-dependent Lyapunov exponent. Frontiers in Fractal Physiology, 2: 110. doi: https://doi.org/10.3389/fphys.2011.00110.

    Google Scholar 

  • Gao J, Hwang S K, Liu J M, 1999b. When can noise induce chaos? Physical Review Letters, 82: 1132–1135.

    Article  Google Scholar 

  • Gao J, Qi Y, Cao Y et al., 2005a. Protein coding sequence identification by simultaneously characterizing the periodic and random features of DNA sequences. Journal of biomedicine and biotechnology, 2: 139–146.

    Article  Google Scholar 

  • Gao J, Rao N S V, Hu J et al., 2005b. Quasi-periodic route to chaos in the dynamics of Internet transport protocols. Physical Review Letters, 94: 198702. doi: https://doi.org/10.1103/PhysRevLett.94.198702.

    Article  Google Scholar 

  • Gao J, Rubin I, 2001. Multifractal modeling of counting processes of long-range-dependent network traffic. Computer Communications, 24: 1400–1410.

    Article  Google Scholar 

  • Gao J, Sultan H, Hu J et al., 2010. Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: A comparison. IEEE Signal Processing Letters, 17: 237–240.

    Article  Google Scholar 

  • Gao J, Zheng Z, 1993. Local exponential divergence plot and optimal embedding of a chaotic time series. Physical Review A, 181: 153–158.

    Google Scholar 

  • Gao J, Zheng Z, 1994. Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Physical Review E, 49: 3807–3814.

    Article  Google Scholar 

  • Gilden D H, Mallon A M, Thornton M T, 1995. 1/f noise in human cognition. Science, 267(5205): 1837–1839.

    Article  Google Scholar 

  • Hu J, Gao J, Cao Y et al., 2007. Exploiting noise in array CGH data to improve detection of DNA copy number change. Nucleic Acids Research, 35(5): e35. doi: https://doi.org/10.1093/nar/gkl730.

    Article  Google Scholar 

  • Hu J, Gao J, Tung W, 2009a. Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos, 19: 028506. doi: https://doi.org/10.1063/1.3152007.

    Article  Google Scholar 

  • Hu J, Gao J, Tung W et al., 2010. Multiscale analysis of heart rate variability: A comparison of different complexity measures. Annals of Biomedical Engineering, 38: 854–864.

    Article  Google Scholar 

  • Hu J, Gao J, Wang X, 2009b. Multifractal analysis of sunspot time series: The effects of the 11-year cycle and Fourier truncation. Journal of Statistical Mechanics: Theory and Experiment, 2: P02066. doi: https://doi.org/10.1088/1742-5468/2009/02/P02066.

    Google Scholar 

  • Islam M N, Sivakumar B, 2002. Characterization and prediction of runoff dynamics: A nonlinear dynamical view. Advances in Water Research, 25: 179–190.

    Article  Google Scholar 

  • Ivanov P C, Rosenblum M G, Amaral L A N et al., 1999. Multifractality in human heartbeat dynamics. Nature, 399(6735): 461–465.

    Article  Google Scholar 

  • Ivanov P C, Rosenblum M G, Peng C K et al., 1996. Scaling behaviour of heartbeat intervals obtained by wavelet- based time-series analysis. Nature, 383(6598): 323–327.

    Article  Google Scholar 

  • Kennel M, Brown R, Abarbanel H, 1992. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45: 3403–3411.

    Article  Google Scholar 

  • Li D, Feng J, Chen L et al., 2003. Study on interdecadal change of Heihe runoff and Qilian Mountain's climate. Plateau Meteorology, 22(2): 104–110. (in Chinese)

    Google Scholar 

  • Li S C, Wang Y, Cai Y L, 2010. The paradigm transformation of geography from the perspective of complexity sciences. Acta Geographica Sinica, 65(12): 1315–1324. (in Chinese)

    Google Scholar 

  • Li W, Kaneko K, 1992. Long-range correlation and partial 1/f a spectrum in a noncoding DNA sequence. Europhysics Letters, 17(7): 655–660.

    Article  Google Scholar 

  • Li X, Cheng G, Liu S et al., 2013. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8): 1145–1160.

    Article  Google Scholar 

  • Liebert W, Pawelzik K, Schuster H, 1991. Optimal embedding of chaotic attractors from topological considerations. Europhysics Letters, 14: 521–526.

    Article  Google Scholar 

  • Liu F, Li X, 2017. Formulation of scale transformation in a stochastic data assimilation framework. Nonlinear Processes in Geophysics, 24(2): 279–291.

    Article  Google Scholar 

  • Liu S M, Li X, Xu Z W et al., 2018. The Heihe integrated observatory network: A basin-scale land surface processes observatory in China. Vadose Zone Journal, 17: 180072. doi: https://doi.org/10.2136/vzj2018.04.0072.

    Article  Google Scholar 

  • Liu S M, Xu Z, Wang W et al., 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4): 1291–1306.

    Article  Google Scholar 

  • Lorenz E N, 1995. Predictability: A problem partly solved. In: Proceedings of Seminar on Predictability, Reading Berkshire, United Kingdom: European Centre for Medium-Range Weather Forecasts, 1–18.

    Google Scholar 

  • Mandelbrot B B, 1982. The Fractal Geometry of Nature. San Francisco: Freeman.

    Google Scholar 

  • Micklin P P, 1988. Desiccation of the Aral Sea: A water management disaster in the Soviet Union. Science, 241: 1170–1176.

    Article  Google Scholar 

  • Miller R N, 2007. Topics in data assimilation: Stochastic processes. Physica D: Nonlinear Phenomena, 230(1): 17–26.

    Article  Google Scholar 

  • Mintz Y, 1965. A very long-term global integration of the primitive equations of atmospheric motion: An experiment in climate simulation. In: Mitchell J M. Causes of Climatic Change. Meteorological Monographs. Boston, MA: American Meteorological Society, 22–36.

    Google Scholar 

  • Osborne A R, Provenzale A, 1989. Finite correlation dimension for stochastic-systems with power-law spectra. Physica D: Nonlinear Phenomena, 35: 357–381.

    Article  Google Scholar 

  • Packard N H, Crutchfield J P, Farmer J D et al., 1980. Geometry from a time series. Physical Review Letters, 45: 712–716.

    Article  Google Scholar 

  • Peng C K, Buldyrev S V, Goldberger A L et al., 1992. Long-range correlations in nucleotide sequences. Nature, 356(6365): 168–170.

    Article  Google Scholar 

  • Pomeau Y, Manneville P, 1980. Intermittent transition to turbulence in dissipative dynamical systems. Communications in Mathematical Physics, 74: 189–197.

    Article  Google Scholar 

  • Provenzale A, Osborne A R, Soj R, 1991. Convergence of the K2 entropy for random noises with power law spectra. Physica D: Nonlinear Phenomena, 47: 361–372.

    Article  Google Scholar 

  • Ruelle D, Takens F, 1971. On the nature of turbulence. Communications in Mathematical Physics, 20(3): 167–19

    Article  Google Scholar 

  • Ryan D A, Sarson G R, 2008. The geodynamo as a low-dimensional deterministic system at the edge of chaos. Europhysics Letters, 83: 49001. doi: https://doi.org/10.1209/0295-5075/83/49001.

    Article  Google Scholar 

  • Sauer T, Yorke J A, Casdagli M, 1991. Embedology. Journal of Statistical Physics, 65(3/4): 579–616.

    Article  Google Scholar 

  • Shen S, Ye S J, Cheng C X et al., 2018. Persistence and corresponding time scales of soil moisture dynamics during summer in the Babao River Basin, Northwest China. Journal of Geophysical Research: Atmospheres, 123: 8936–8948. doi: https://doi.org/10.1029/2018JD028414.

    Google Scholar 

  • Simmons A, Hollingsworth A, 2002. Some aspects of the improvement in skill of numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 128(580): 647–677.

    Article  Google Scholar 

  • Sivakumar B, 2004. Chaos theory in geophysics: Past, present and future. Chaos, Solitons & Fractals, 19(2): 441–462.

    Article  Google Scholar 

  • Song C Q, Cheng C X, Shi P J, 2018. Geography complexity: New connotations of geography in the new era. Acta Geographica Sinica, 73(7): 1189–1198. (in Chinese)

    Google Scholar 

  • Song C Q, Yuan L H, Yang X F et al., 2017. Ecological-hydrological processes in arid environment: Past, present and future. Journal of Geographical Sciences, 27(12): 1577–1594.

    Article  Google Scholar 

  • Takens F, 1981. Detecting strange attractors in turbulence. In: Rand D, Young L S. Dynamical Systems and Turbulence. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 366–381.

    Google Scholar 

  • Tessier Y, Lovejoy S, Hubert P et al., 1996. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. Journal of Geophysical Research: Atmospheres, 101(D21): 26427–26440.

    Article  Google Scholar 

  • Tung W, Gao J, Hu J et al., 2011. Detecting chaotic signals in heavy noise environments. Physical Review E, 83: 046210. doi: https://doi.org/10.1103/PhysRevE.83.046210.

    Article  Google Scholar 

  • Turcotte D L, 1995. Chaos, fractals, nonlinear phenomena in earth sciences. Reviews of Geophysics, 33(Suppl.1): 341–344.

    Article  Google Scholar 

  • Voss R F, 1992. Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Physical Review Letters, 68(25): 3805–3808.

    Article  Google Scholar 

  • Wang P, Li Z, Gao W et al., 2011. Glacier changes in the Heihe River Basin over the past 50 years in the context of climate change. Resources Science, 33(3): 399–407. (in Chinese)

    Google Scholar 

  • Wang W, Vrijling J K, Van Gelder P H A J M et al., 2006. Testing for nonlinearity of streamflow processes at different timescales. Journal of Hydrology, 322: 247–268.

    Article  Google Scholar 

  • Wolf A, Swift, J B, Swinney H L et al., 1985. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 6: 285–317.

    Article  Google Scholar 

  • Wolf M, 1997. 1/f noise in the distribution of prime numbers. Physica A: Statistical Mechanics and Its Applications, 241(3/4): 493–499.

    Article  Google Scholar 

  • Xiao S, Xiao H, Kobayashi O, 2007. Dendroclimatological investigations of sea buckthorn (Hippophae rhamnoides) and reconstruction of the equilibrium line altitude of the July First Glacier in the western Qilian Mountains, northwestern China. Tree-Ring Research, 63: 15–26.

    Article  Google Scholar 

  • Yang J, Su K, Ye S J, 2019. Stability and long-range correlation of air temperature in the Heihe River Basin. Journal of Geographical Sciences, 29(9): 1462–1474.

    Google Scholar 

  • Zhang T, Shen S, Cheng C X et al., 2018. Long-range correlation analysis of soil temperature and moisture on A'rou hillsides, Babao River Basin. Journal of Geophysical Research: Atmospheres, 123: 12606–12620. doi.org/https://doi.org/10.1029/2018JD029094.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Gao.

Additional information

Foundation

National Natural Science Foundation of China, No.71661002, No.41671532; National Key R&D Program of China, No.2017YFB0504102; The Fundamental Research Funds for the Central Universities

Author:

Gao Jianbo, Professor, specialized in complexity theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Fang, P. & Yuan, L. Analyses of geographical observations in the Heihe River Basin: Perspectives from complexity theory. J. Geogr. Sci. 29, 1441–1461 (2019). https://doi.org/10.1007/s11442-019-1670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-019-1670-6

Keywords

Navigation