Non-isothermal soil-structure interface model basedon critical state theory

Abstract

In energy geostructures, the soil-structure interface is subjected to thermo-mechanical loads. In this study, a non-isothermal soil-structure interface model based on critical state theory is developed from a granular soil-structure interface constitutive model under isothermal conditions. The model is capable of capturing the effect of temperature on sand/clay-structure interfaces under constant normal load and constant normal stiffness conditions. First, the developed model was verified for sand-structure interface in isothermal conditions. Then, it was calibrated for clay-structure interface under non-isothermal conditions. On one hand, a well-defined peak shear stress for the clay-structure interface and, on the other hand, the effect of temperature on the void ratio of the clay-structure interface were captured and reproduced by the model. The importance of interface thickness determination and some differences between the interface thicknesses of clay-structure and sand-structure interfaces are discussed in detail. The additional parameters have physical meanings and can be determined from laboratory tests. The modeling predictions are in good agreement with experimental results, and the main trends are properly reproduced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Abbreviations

\(e (-)\) :

Void ratio

\(e_\mathrm{in} (-)\) :

Initial void ratio

\(e_\mathrm{in}(T) (-)\) :

Initial void ratio at temperature T

\(e_\mathrm{cs} (-)\) :

Critical state void ratio

\(\epsilon (-)\) :

Shear strain (in direct shear test)

W (mm):

Shear displacement (in direct shear test)

\(\xi (\mathrm{mm}^{-1})\) :

Controls the rate of void ratio evolution

\(k_{1}^{*} (\mathrm{mm}^{-1})\) :

Intensifies the initial contraction

\(k_{2}\) (kPa/mm):

Parameter of the model

K (kPa/mm):

Stiffness

t (mm):

Interface thickness

\(\Gamma (-)\) :

Initial critical void ratio

\(\lambda (-)\) :

Slope of the critical void ratio reduction with normal stress

\(\mu \) (kPa):

Elastic shear modulus

\(k_{t0}\) (kPa/mm):

Slope of the initial part of the \(\tau -w\) Curve

\(M (-)\) :

Slope of the \(\tau /\sigma _{n}\)

N :

Controls the peak and the strain softening

\(\psi \) :

Controls the rate of volumetric evolution

\(\alpha (^{\circ }C^{-1})\) :

Slope of the void ratio evolution with temperature

\(T (^{\circ }C)\) :

Temperature

\(\beta (-)\) :

Controls the effect of normal stress

CNL:

Constant normal load

CNS:

Constant normal stiffness

\(\tau \) (kPa):

Shear stress

\(\sigma ^{'}_{n}\) (kPa):

Effective normal stress

U (mm):

Normal displacement

\(R_\mathrm{max}\) (mm):

Maximum surface roughness

\(\delta (^{\circ })\) :

Friction angle of interface

\(D_{50}\) (mm):

Mean diameter of soil particles

\(\rho _{s}\) \((\mathrm{g/cm}^{3})\) :

Grain density of soil particles

\(\rho _{dmax}\) \((\mathrm{kN/m}^{3})\) :

Maximum dry density

\(\rho _{dmin}\) \((\mathrm{kN/m}^{3})\) :

Minimum dry density

\(e_\mathrm{max}\) :

Maximum void ratio

\(e_\mathrm{min}\) :

Minimum void ratio

\(C_{u}\) \(=D_{60}/D_{10}\) :

Coefficient of uniformity

k (m/s):

Hydraulic conductivity

LL (\(\%\)):

Liquid limit

PL (\(\%\)):

Plastic limit

PI (\(\%\)):

Plasticity index

\(\lambda \) (W/mK):

Thermal conductivity

C \((J/m^{3}K)\) :

Heat capacity

References

  1. 1.

    Abuel-Naga H, Bergado D, Ramana G, Grino L, Rujivipat P, Thet Y (2006) Experimental evaluation of engineering behavior of soft bangkok clay under elevated temperature. J Geotech Geoenviron Eng 132(7):902–910

    Article  Google Scholar 

  2. 2.

    Abuel-Naga HM, Bergado DT, Lim BF (2007) Effect of temperature on shear strength and yielding behavior of soft bangkok clay. Soils Found 47(3):423–436

    Article  Google Scholar 

  3. 3.

    Adam D, Markiewicz R (2009) Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique 59(3):229–236

    Article  Google Scholar 

  4. 4.

    Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–112

    Article  Google Scholar 

  5. 5.

    Boulon M (1989) Basic features of soil structure interface behaviour. Comput Geotech 7(1–2):115–131

    Article  Google Scholar 

  6. 6.

    Boulon M, Foray P (1986) Physical and numerical simulation of lateral shaft friction along offshore piles in sand. In: Proceedings of the 3rd international conference on numerical methods in offshore piling. Nantes, France, pp 127–147

  7. 7.

    Boulon M, Ghionna VN, Mortara G (2003) A strain-hardening elastoplastic model for sand-structure interface under monotonic and cyclic loading. Math Comput Model 37(5–6):623–630

    MATH  Article  Google Scholar 

  8. 8.

    Bourne-Webb P, Amatya B, Soga K, Amis T, Davidson C, Payne P (2009) Energy pile test at lambeth college, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3):237–248

    Article  Google Scholar 

  9. 9.

    Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56(2):81–122

    Article  Google Scholar 

  10. 10.

    Campanella RG, Mitchell JK (1968) Influence of temperature variations on soil behavior. J Soil Mech Found Div 94(SM3):709–734

    Google Scholar 

  11. 11.

    Cekerevac C, Laloui L (2004) Experimental study of thermal effects on the mechanical behaviour of a clay. Int J Numer Anal Methods Geomech 28(3):209–228

    Article  Google Scholar 

  12. 12.

    D’Aguiar SC, Modaressi-Farahmand-Razavi A, Dos Santos JA, Lopez-Caballero F (2011) Elastoplastic constitutive modelling of soil-structure interfaces under monotonic and cyclic loading. Comput Geotech 38(4):430–447

    Article  Google Scholar 

  13. 13.

    De Gennaro V, Frank R (2002) Elasto-plastic analysis of the interface behaviour between granular media and structure. Comput Geotech 29(7):547–572

    Article  Google Scholar 

  14. 14.

    De Moel M, Bach PM, Bouazza A, Singh RM, Sun JO (2010) Technological advances and applications of geothermal energy pile foundations and their feasibility in australia. Renew Sustain Energy Rev 14(9):2683–2696

    Article  Google Scholar 

  15. 15.

    DeJong JT, Randolph MF, White DJ (2003) Interface load transfer degradation during cyclic loading: a microscale investigation. Soils Found 43(4):81–93

    Article  Google Scholar 

  16. 16.

    Desai C, Drumm E, Zaman M (1985) Cyclic testing and modeling of interfaces. J Geotechn Eng 111(6):793–815

    Article  Google Scholar 

  17. 17.

    Di Donna A, Ferrari A, Laloui L (2015) Experimental investigations of the soil-concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures. Can Geotech J 53(4):659–672

    Article  Google Scholar 

  18. 18.

    Faizal M, Bouazza A, Haberfield C, McCartney JS (2018) Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes. J Geotech Geoenviron Eng 144(10):04018072

    Article  Google Scholar 

  19. 19.

    Fakharian K, Evgin E (1997) Cyclic simple-shear behavior of sand-steel interfaces under constant normal stiffness condition. J Geotech Geoenviron Eng 123(12):1096–1105

    Article  Google Scholar 

  20. 20.

    Fakharian K, Evgin E (2000) Elasto-plastic modelling of stress-path-dependent behaviour of interfaces. Int J Numer Anal Methods Geomech 24(2):183–199

    MATH  Article  Google Scholar 

  21. 21.

    Ghionna VN, Mortara G (2002) An elastoplastic model for sand - structure interface behaviour. Géotechnique 52(1):41–50

    Article  Google Scholar 

  22. 22.

    Graham J, Tanaka N, Crilly T, Alfaro M (2001) Modified cam-clay modelling of temperature effects in clays. Can Geotech J 38(3):608–621

    Article  Google Scholar 

  23. 23.

    Hamidi A, Khazaei C (2010) A thermo-mechanical constitutive model for saturated clays. Int J Geotech Eng 4:445–459

    Article  Google Scholar 

  24. 24.

    Houston SL, Lin H-D (1987) A thermal consolidation model for pelagic clays. Mar Georesour Geotechnol 7(2):79–98

    Article  Google Scholar 

  25. 25.

    Hueckel T, Baldi G (1990) Thermoplasticity of saturated clays: experimental constitutive study. J Geotech Eng 116(12):1778–1796

    Article  Google Scholar 

  26. 26.

    Hueckel T, Borsetto M (1990) Thermoplasticity of saturated soils and shales: constitutive equations. J Geotech Eng 116(12):1765–1777

    Article  Google Scholar 

  27. 27.

    Hueckel T, François B, Laloui L (2009) Explaining thermal failure in saturated clays. Géotechnique 59(3):197–212

    Article  Google Scholar 

  28. 28.

    Hueckel T, Pellegrini R, Del Olmo C (1998) A constitutive study of thermo-elasto-plasticity of deep carbonatic clays. Int J Numer Anal Methods Geomech 22(7):549–574

    MATH  Article  Google Scholar 

  29. 29.

    Kuntiwattanakul P, Towhata I, Ohishi K, Seko I (1995) Temperature effects on undrained shear characteristics of clay. Soils Found 35(1):147–162

    Article  Google Scholar 

  30. 30.

    Kuo M, Bolton M (2014) Shear tests on deep-ocean clay crust from the gulf of guinea. Géotechnique 64(4):249–257

    Article  Google Scholar 

  31. 31.

    Kuo M, Vincent C, Bolton M, Hill A, Rattley M (2015) A new torsional shear device for pipeline interface shear testing, Proceedings of 3rd International Symposium on Frontiers in Offshore Geotechnics. Taylor & Francis Group, London, pp 405–410

    Google Scholar 

  32. 32.

    Laguros (1969) Effect of temperature on some engineering properties of clay soils. In: Special Report 103, Washington D.C

  33. 33.

    Lahoori M, Jannot Y, Rosin-Paumier S, Boukelia A, Masrouri F (2020) Measurement of the thermal properties of unsaturated compacted soil by the transfer function estimation method. Appl Therm Eng 167:114795

    Article  Google Scholar 

  34. 34.

    Laloui L, François B (2009) Acmeg-t: soil thermoplasticity model. J Eng Mech 135(9):932–944

    Article  Google Scholar 

  35. 35.

    Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Methods Geomech 30(8):763–781

    Article  Google Scholar 

  36. 36.

    Lashkari A (2013) Prediction of the shaft resistance of nondisplacement piles in sand. Int J Numer Anal Methods Geomech 37(8):904–931

    Article  Google Scholar 

  37. 37.

    Lashkari A (2017) A simple critical state interface model and its application in prediction of shaft resistance of non-displacement piles in sand. Comput Geotech 88:95–110

    Article  Google Scholar 

  38. 38.

    Lemos L, Vaughan P (2000) Clay-interface shear resistance. Géotechnique 50(1):55–64

    Article  Google Scholar 

  39. 39.

    Li C, Kong G, Liu H, Abuel-Naga H (2018) Effect of temperature on behaviour of red clay-structure interface. Can Geotech J 56(1):126–134

    Article  Google Scholar 

  40. 40.

    Liu H, Liu H, Xiao Y, McCartney JS (2018) Effects of temperature on the shear strength of saturated sand. Soils Found 58(6):1326–1338

    Article  Google Scholar 

  41. 41.

    Liu H, Song E, Ling HI (2006) Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics. Mech Res Commun 33(4):515–531

    MATH  Article  Google Scholar 

  42. 42.

    Loveridge F, McCartney JS, Narsilio GA, Sanchez M (2020) Energy geostructures: a review of analysis approaches, in situ testing and model scale experiments. Geomech Energy Environ 22:100173

    Article  Google Scholar 

  43. 43.

    Maghsoodi S (2020) Thermo-mechanical behavior of soil-structure interface under monotonic and cyclic loads in the context of energy geostructures, PhD thesis, Université de Lorraine

  44. 44.

    Maghsoodi S, Cuisinier O, Masrouri F (2019) Thermo-mechanical behaviour of clay-structure interface. In: E3S web of conferences, vol 92, EDP sciences, pp 10002

  45. 45.

    Maghsoodi S, Cuisinier O, Masrouri F (2020a) Effect of temperature on the cyclic behavior of clay-structure interface. J Geotech Geoenviron Eng 146(10):04020103

    Article  Google Scholar 

  46. 46.

    Maghsoodi S, Cuisinier O, Masrouri F (2020b) Thermal effects on mechanical behaviour of soil-structure interface. Can Geotech J 57(1):32–47. https://doi.org/10.1139/cgj-2018-0583

    Article  Google Scholar 

  47. 47.

    Maghsoodi S, Cuisinier O, Masrouri F (2020c) Thermal effects on one-way cyclic behaviour of clay-structure interface. In: E3S web of conferences, vol 205, EDP sciences, pp 05001. https://doi.org/10.1051/e3sconf/202020505001

  48. 48.

    Martinez A, Frost JD, Hebeler GL (2015) Experimental study of shear zones formed at sand/steel interfaces in axial and torsional axisymmetric tests. Geotech Test J 38(4):409–426

    Article  Google Scholar 

  49. 49.

    Martinez A, Stutz HH (2018) Rate effects on the interface shear behaviour of normally and over-consolidated clay. Géotechnique 69(9):801–815

    Article  Google Scholar 

  50. 50.

    Mašín D, Khalili N (2011) Modelling of thermal effects in hypoplasticity. In: Proceedings of the 13th international conference of the IACMAG, Melbourne, Australia, vol 1, pp 237–245

  51. 51.

    Mašín D, Khalili N (2012) A thermo-mechanical model for variably saturated soils based on hypoplasticity. Int J Numer Anal Methods Geomech 36(12):1461–1485

    Article  Google Scholar 

  52. 52.

    McCartney JS, Rosenberg JE (2011) Impact of heat exchange on side shear in thermo-active foundations. In: Geo-Frontiers 2011: advances in geotechnical engineering, pp 488–498

  53. 53.

    Mortara G, Boulon M, Ghionna VN (2002) A 2-d constitutive model for cyclic interface behaviour. Int J Numer Anal Methods Geomech 26(11):1071–1096

    MATH  Article  Google Scholar 

  54. 54.

    Murayama (1969) Effect of temperature on the elasticity of clays, Special Report 103, Washington D.C

  55. 55.

    Murphy KD, McCartney JS, Henry KS (2015) Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotechnica 10(2):179–195

    Article  Google Scholar 

  56. 56.

    Pra-ai S, Boulon M (2017) Soil-structure cyclic direct shear tests: a new interpretation of the direct shear experiment and its application to a series of cyclic tests. Acta Geotechnica 12(1):107–127

    Article  Google Scholar 

  57. 57.

    Saberi M, Annan C-D, Konrad J-M (2017) Constitutive modeling of gravelly soil-structure interface considering particle breakage. J Eng Mech 143(8):04017044

    Article  Google Scholar 

  58. 58.

    Saberi M, Annan C-D, Konrad J-M, Lashkari A (2016) A critical state two-surface plasticity model for gravelly soil-structure interfaces under monotonic and cyclic loading. Comput Geotech 80:71–82

    Article  Google Scholar 

  59. 59.

    Sadrekarimi A, Olson SM (2010) Shear band formation observed in ring shear tests on sandy soils. J Geotech Geoenviron Eng 136(2):366–375

    Article  Google Scholar 

  60. 60.

    Shahrour I, Rezaie F (1997) An elastoplastic constitutive relation for the soil-structure interface under cyclic loading. Comput Geotech 21(1):21–39

    Article  Google Scholar 

  61. 61.

    Sherif MA, Burrous CM (1969) Temperature effects on the unconfined shear strength of saturated, cohesive soil. Highway Research Board Special Report (103)

  62. 62.

    Stutz H, Mašín D (2017) Hypoplastic interface models for fine-grained soils. Int J Numer Anal Methods Geomech 41(2):284–303

    Article  Google Scholar 

  63. 63.

    Stutz H, Mašín D, Wuttke F (2016) Enhancement of a hypoplastic model for granular soil-structure interface behaviour. Acta Geotechnica 11(6):1249–1261

    Article  Google Scholar 

  64. 64.

    Stutz H, Mašín D, Wuttke F, Prädel B (2016) Thermo-mechanical hypoplastic interface model for fine-grained soils. In: Proceedings of the 1st international conference on energy geotechnics, pp 351–357

  65. 65.

    Suryatriyastuti M, Mroueh H, Burlon S (2014) A load transfer approach for studying the cyclic behavior of thermo-active piles. Comput Geotech 55:378–391

    Article  Google Scholar 

  66. 66.

    Tang A-M, Cui Y-J (2009) Modelling the thermo-mechanical volume change behaviour of compacted expansive clays, arXiv preprint arXiv:0904.3614

  67. 67.

    Tsubakihara Y, Kishida H (1993) Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses. Soils Found 33(2):1–13

    Article  Google Scholar 

  68. 68.

    Yao Y, Zhou A (2013) Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays. Geotechnique 63(15):1328

    Article  Google Scholar 

  69. 69.

    Yavari N (2014) Aspects géotechniques des pieux de fondation énergétiques, PhD thesis, Paris Est

  70. 70.

    Yavari N, Tang AM, Pereira J-M, Hassen G (2016) Effect of temperature on the shear strength of soils and the soil-structure interface. Can Geotech J 53(7):1186–1194

    Article  Google Scholar 

  71. 71.

    Yazdani S, Helwany S, Olgun G (2019) Influence of temperature on soil-pile interface shear strength. Geomech Energy Environ 18:69–78

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soheib Maghsoodi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maghsoodi, S., Cuisinier, O. & Masrouri, F. Non-isothermal soil-structure interface model basedon critical state theory. Acta Geotech. (2021). https://doi.org/10.1007/s11440-020-01133-1

Download citation

Keywords

  • Constant normal stiffness (CNS)
  • Critical state theory
  • Energy geostructures
  • Non-isothermal model
  • Soil-structure interface
  • Temperature