An empirical relation for parameter mi in the Hoek–Brown criterion of anisotropic intact rocks with consideration of the minor principal stress and stress-to-weak-plane angle

Abstract

The parameter mi accounts for the anisotropy of rock strength, and the accurate determination of mi is a primary requirement of the Hoek–Brown (H–B) strength criterion. In this study, a relation for mi as a bivariate, second-order, polynomial function of the minor principal stress (σ3) and the angle (β) between the major principal stress and weak plane is developed. First, the possible contribution of σ3 and β to mi is systematically investigated based on substantial uniaxial and triaxial compression test data of various rock types collected from the available literature. This investigation allows mi to be described in terms of σ3 and β. A self-defined fitting function is adopted to formulate the functional relationship among these metrics. Using this relation, the H–B strength criterion is modified, and its performance is evaluated in two examples. The examples illustrate the improved ability of the modified criterion to determine the strength of metamorphic and sedimentary rocks. The applicability of this criterion to additional rock types warrants further study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Abbreviations

σ 1 :

Major principal stress at failure

σ 1_average :

Average value of the peak strength at rock failure for all rock types

σ 1i_observed :

Observed peak strength at rock failure for a given minor principal stress at the ith data point

σ 1i_estimated :

Estimated peak strength at rock failure for a given minor principal stress at the ith data point

σ 3 :

Minor principal stresses at failure

σ ci :

Uniaxial compressive strength

σ cii :

Crack initiation stress

σ cβ :

Uniaxial compressive strength at angle β

σ t :

Uniaxial tensile strength

β :

Stress-to-weak-plane angle from the major principal stress direction

ϕ :

Internal friction angle

γ :

Empirical parameter

ξ m :

Value of β when mb is minimized

a :

Rock-type-dependent constant

A 1 :

Coefficient, which reflects the initial value of mi(β) under special conditions

A 2 :

Coefficient, which reflects the initial value of mi(β) when β is 0°

A 3 :

Coefficient, which reflects the variation rate with β

AAREP:

Average absolute relative error percentage

b :

Rock-type-dependent constant

B 1 :

Regression coefficient

C :

Σ3-Dependent constant

COA:

Coefficient of accordance

D :

Damage factor

GSI:

Geological strength index

k :

Slope of the curve between σ1 and σ3

k β :

β-Dependent anisotropic parameter

m b :

Rock mass material constant

m i :

Material parameter

m i(90) :

Value of mi(β) when β is 90°

n :

Number of repeated triaxial compression tests

N :

Number of datasets for all rock types

P 1 :

Coefficient, which reflects the initial value of mi(β) under special conditions

P 2 :

Value of β when mi(β) is minimized

P 3 :

Coefficient, which reflects the initial value of mi(β) when β is 0°

P 4 :

Coefficient, which reflects the initial decreasing rate of mi(β) under conditions of relatively high β

PE:

Percent error for each data point

s :

Rock mass material constant

t 1 :

Coefficient, which represents the increasing rate of mi(β) with the square of the orientation angle β

t 2 :

Coefficient, which represents the increasing rate of mi(β) with the orientation angle β

t 3 :

Coefficient, which represents the increasing rate of mi(β) with the confining pressure σ3

t 4 :

Coefficient, which represents the initial value when σ3 is 0 and β is 0°

References

  1. 1.

    Ajalloeian R, Lashkaripour GR (2000) Strength anisotropies in mudrocks. Bull Eng Geol Environ 59:195–199. https://doi.org/10.1007/s100640000055

    Article  Google Scholar 

  2. 2.

    ASTM International (2014) Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM International, West Conshohocken

    Google Scholar 

  3. 3.

    Attewell PB, Sandford MR (1974) Intrinsic shear strength of a brittle, anisotropic rock—I: experimental and mechanical interpretation. Int J Rock Mech Min Sci Geomech Abstr 11:423–430. https://doi.org/10.1016/0148-9062(74)90453-7

    Article  Google Scholar 

  4. 4.

    Bagheripour MH, Hakimipour R (2009) Evaluating the efficiency of the Hoek–Brown failure criterion in predicting strength of rock mass for dam foundations and tunnels. In: Proceedings of the 1st national conference on engineering and infrastructure managements. Tehran University, Iran

  5. 5.

    Bagheripour MH, Rahgozar R, Pashnesaz H, Malekinejad M (2011) A complement to Hoek–Brown failure criterion for strength prediction in anisotropic rock. Geomech Eng 3:61–81. https://doi.org/10.12989/GAE.2011.3.1.061

    Article  Google Scholar 

  6. 6.

    Bieniawski ZT (1967) Mechanism of brittle fracture of rock, parts I, II and III. Int J Rock Mech Min Sci Geomech Abstr 4:395–430. https://doi.org/10.1016/0148-9062(67)90030-7

    Article  Google Scholar 

  7. 7.

    Cai M (2010) Practical estimates of tensile strength and Hoek–Brown strength parameter mi of brittle rocks. Rock Mech Rock Eng 43:167–184. https://doi.org/10.1007/s00603-009-0053-1

    Article  Google Scholar 

  8. 8.

    Colak K, Unlu T (2004) Effect of transverse anisotropy on the Hoek–Brown strength parameter ‘mi’ for intact rocks. Int J Rock Mech Min Sci 41:1045–1052. https://doi.org/10.1016/j.ijrmms.2004.04.004

    Article  Google Scholar 

  9. 9.

    Das SK, Basudhar PK (2009) Comparison of intact rock failure criteria using various statistical methods. Acta Geotech 4:223–231. https://doi.org/10.1007/s11440-009-0088-1

    Article  Google Scholar 

  10. 10.

    Deák F, Kovács L, Vásárhelyi B (2013) Modeling the excavation damaged zones in the Bátaapáti radioactive waste repository. In: ISRM international symposium—EUROCK 2013. International Society for Rock Mechanics and Rock Engineering, Wroclaw, Poland

  11. 11.

    Donath FA (1964) Strength variation, deformational behaviour of anisotropic rocks. In: Judid WR (ed) State of the earth in the earth’s crust. Elsevier, New York, pp 281–298

    Google Scholar 

  12. 12.

    Eberhardt E (2012) The Hoek–Brown failure criterion. Rock Mech Rock Eng 45:981–988. https://doi.org/10.1007/s00603-012-0276-4

    Article  Google Scholar 

  13. 13.

    He PF, Kulatilake PHSW, Yang XX, Liu DQ, He MC (2018) Detailed comparison of nine intact rock failure criteria using polyaxial intact coal strength data obtained through PFC3D simulations. Acta Geotech 13:419–445. https://doi.org/10.1007/s11440-017-0566-9

    Article  Google Scholar 

  14. 14.

    Hoek E (2007) Practical rock engineering. Institution of Mining and Metallurgy, London, pp 198–200

    Google Scholar 

  15. 15.

    Hoek E, Bieniawski ZT (1984) Brittle fracture propagation in rock under compression. Int J Fract 26:276–294. https://doi.org/10.1007/BF00962960

    Article  Google Scholar 

  16. 16.

    Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Geoenviron Eng 106:1013–1035

    Google Scholar 

  17. 17.

    Hoek E, Brown ET (1980) Underground excavations in rock. CRC Press, London

    Google Scholar 

  18. 18.

    Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X

    Article  Google Scholar 

  19. 19.

    Hoek E, Brown ET (2019) The Hoek–Brown failure criterion and GSI—2018 edition. J Rock Mech Geotech Eng 11:445–463. https://doi.org/10.1016/j.jrmge.2018.08.001

    Article  Google Scholar 

  20. 20.

    Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-brown failure criterion-2002 edition. In: Proceedings of NARMS-TAC conference. NARMS-TAC, Toronto, pp 267–273

  21. 21.

    Horino FG, Ellickson ML (1970) A method for estimating strength of rock containing planes of weakness. U.S. Department of Interior, Bureau of Mines, Washington, DC

    Google Scholar 

  22. 22.

    Ismael M, Konietzky H, Imam H, Helal H (2015) Extension and modification of Hoek and Brown failure criterion to incorporate anisotropy. ISRM regional symposium—EUROCK 2015. International Society for Rock Mechanics and Rock Engineering, Salzburga, pp 767–772

    Google Scholar 

  23. 23.

    Karakul H, Ulusay R, Isik NS (2010) Empirical models and numerical analysis for assessing strength anisotropy based on block punch index and uniaxial compression tests. Int J Rock Mech Min Sci 47:657–665. https://doi.org/10.1016/j.ijrmms.2010.03.006

    Article  Google Scholar 

  24. 24.

    Kovari K, Tisa A, Einstein HH, Franklin JA (1983) Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int J Rock Mech Min Sci Geomech Abs 20(6):283–290

    Google Scholar 

  25. 25.

    Kumar A (2006) Engineering behaviour of anisotropic rocks. Department of Civil Engineering, IIT Roorkee, Roorkee

    Google Scholar 

  26. 26.

    Liao JJ, Yang MT, Hsieh HY (1997) Direct tensile behavior of a transversely isotropic rock. Int J Rock Mech Min Sci 34:837–849. https://doi.org/10.1016/s1365-1609(96)00065-4

    Article  Google Scholar 

  27. 27.

    Matsukura Y, Hashizume K, Oguchi CT (2002) Effect of microstructure and weathering on the strength anisotropy of porous rhyolite. Eng Geol 63:39–47. https://doi.org/10.1016/S0013-7952(01)00067-9

    Article  Google Scholar 

  28. 28.

    McLamore R, Gray KE (1967) The mechanical behavior of anisotropic sedimentary rocks. J Eng Ind 89:62–73. https://doi.org/10.1115/1.3610013

    Article  Google Scholar 

  29. 29.

    Merifield RS, Lyamin AV, Sloan SW (2006) Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek–Brown criterion. Int J Rock Mech Min Sci 43:920–937. https://doi.org/10.1016/j.ijrmms.2006.02.001

    Article  Google Scholar 

  30. 30.

    Nasseri MHB, Rao KS, Ramamurthy T (2003) Anisotropic strength and deformational behavior of Himalayan schists. Int J Rock Mech Min Sci 40:3–23. https://doi.org/10.1016/S1365-1609(02)00103-X

    Article  Google Scholar 

  31. 31.

    Nemat-Nasser S, Horii H (1982) Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J Geophys Res-Sol Ea 87(B8):6805–6821

    Article  Google Scholar 

  32. 32.

    Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behaviour of Tournemire shale. Int J Rock Mech Min Sci 34:3–16. https://doi.org/10.1016/S1365-1609(97)80029-9

    Article  Google Scholar 

  33. 33.

    Paterson MS, Wong TF (2005) Experimental rock deformation—the brittle field. Springer, Berlin

    Google Scholar 

  34. 34.

    Peng J, Rong G, Wang XJ, Zhou CB (2013) An empirical model for determination of mi in Hoek–Brown failure criterion for intact rocks. J Centr South Univ (Sci Technol) 44(11):4617–4623

    Google Scholar 

  35. 35.

    Peng J, Rong G, Cai M, Wang X, Zhou C (2014) An empirical failure criterion for intact rocks. Rock Mech Rock Eng 47:347–356. https://doi.org/10.1007/s00603-012-0355-6

    Article  Google Scholar 

  36. 36.

    Perras MA, Diederichs MS (2014) A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng 32:525–546. https://doi.org/10.1007/s10706-014-9732-0

    Article  Google Scholar 

  37. 37.

    Przecherski P, Pietruszczak S (2020) On specification of conditions at failure in interbedded sedimentary rock mass. Acta Geotech 15(2):365–374

    Article  Google Scholar 

  38. 38.

    Richards LR, Read SAL (2011) A comparison of methods for determining mi, the Hoek–Brown parameter for intact rock material. In: 45th U.S. rock mechanics/geomechanics symposium. American Rock Mechanics Association, San Francisco, CA, pp 1–10

  39. 39.

    Saeidi O, Rasouli V, Vaneghi RG, Gholami R, Torabi SR (2014) A modified failure criterion for transversely isotropic rocks. Geosci Front 5:215–225. https://doi.org/10.1016/j.gsf.2013.05.005

    Article  Google Scholar 

  40. 40.

    Saroglou H, Tsiambaos G (2008) A modified Hoek–Brown failure criterion for anisotropic intact rock. Int J Rock Mech Min Sci 45:223–234. https://doi.org/10.1016/j.ijrmms.2007.05.004

    Article  Google Scholar 

  41. 41.

    Shen J, Karaus M (2014) Simplified method for estimating the Hoek–Brown constant for intact rocks. J Geotech Geoenviron Eng 140:04014025. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001116

    Article  Google Scholar 

  42. 42.

    Shen J, Jimenez R, Karakus M, Xu C (2014) A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength. Rock Mech Rock Eng 47:357–369. https://doi.org/10.1007/s00603-013-0408-5

    Article  Google Scholar 

  43. 43.

    Shi X, Yang X, Meng Y, Li G (2016) Modified Hoek–Brown failure criterion for anisotropic rocks. Environ Earth Sci 75:995. https://doi.org/10.1007/s12665-016-5810-3

    Article  Google Scholar 

  44. 44.

    Singh J, Ramamurthy T, Rao G (1989) Strength anisotropies in rocks. Indian Geotech J 19:147–166

    Google Scholar 

  45. 45.

    Singh M, Raj A, Singh B (2011) Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int J Rock Mech Min Sci 48:546–555. https://doi.org/10.1016/j.ijrmms.2011.02.004

    Article  Google Scholar 

  46. 46.

    Singh M, Samadhiya NK, Kumar A, Kumar V, Singh B (2015) A nonlinear criterion for triaxial strength of inherently anisotropic rocks. Rock Mech Rock Eng 48:1387–1405. https://doi.org/10.1007/s00603-015-0708-z

    Article  Google Scholar 

  47. 47.

    Ván P, Vásárhelyi B (2014) Sensitivity analysis of GSI based mechanical parameters of the rock mass. Period Polytech Civ Eng 58:379–386. https://doi.org/10.3311/PPci.7507

    Article  Google Scholar 

  48. 48.

    Wang S, Wu W, Wang J, Yin Z, Cui D, Xiang W (2018) Residual-state creep of clastic soil in a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China. Landslides 15:2413–2422. https://doi.org/10.1007/s10346-018-1043-8

    Article  Google Scholar 

  49. 49.

    Wang S, Wang J, Wu W, Cui D, Su A, Xiang W (2020) Creep properties of clastic soil in a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China. Eng Geol 267:105493. https://doi.org/10.1016/j.enggeo.2020.105493

    Article  Google Scholar 

  50. 50.

    Wen T, Tang H, Huang L, Wang Y, Ma J (2020) Energy evolution: a new perspective on the failure mechanism of purplish-red mudstones from the Three Gorges Reservoir area, China. Eng Geol 264:105350. https://doi.org/10.1016/j.enggeo.2019.105350

    Article  Google Scholar 

  51. 51.

    Wen T, Tang HM, Wang YK, Ma JW (2020) Evaluation of methods for determining rock brittleness under compression. J Nat Gas Sci Eng. https://doi.org/10.1016/j.jngse.2020.103321

    Article  Google Scholar 

  52. 52.

    Wen T, Tang HM, Wang YK (2020) Brittleness evaluation based on the energy evolution throughout the failure process of rocks. J Petrol Sci Eng 1940:107361

    Article  Google Scholar 

  53. 53.

    Wu S, Zhang S, Guo C, Xiong L (2017) A generalized nonlinear failure criterion for frictional materials. Acta Geotech 12:1353–1371. https://doi.org/10.1007/s11440-017-0532-6

    Article  Google Scholar 

  54. 54.

    Wu L, Adoko AC, Li B (2018) An illustration of determining quantitatively the rock mass quality parameters of the Hoek–Brown failure criterion. Rock Mech Rock Eng 51:1063–1076. https://doi.org/10.1007/s00603-017-1375-z

    Article  Google Scholar 

  55. 55.

    Zhang XM, Yang JS, Liu BC (2009) Experimental study on anisotropic strength properties of sandstone. ISRM international symposium on rock mechanics—SINOROCK 2009. International Society for Rock Mechanics and Rock Engineering, The University of Hong Kong, China, pp 1325–1335

    Google Scholar 

  56. 56.

    Zhang ZZ, Zhou LL, Yuan ZX, Sun ZH (2012) Research on shear failure criterion for layered rock mass. Adv Mater Res 446:1491–1496

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by the National Key Research and Development Program of China (2017YFC1501305) and the China Postdoctoral Science Foundation (2018M642799), Science and Technology Research Project of Hubei Education Department (D2019038), Open Foundation of Top Disciplines in Yangtze University.

Author information

Affiliations

Authors

Contributions

Tao Wen contributed to investigation, methodology, project administration, validation, visualization, and writing of original draft. Huiming Tang contributed to conceptualization, data curation, funding acquisition, and supervision. Lei Huang contributed to data curation, supervision, review, and editing. Asif Hamza contributed to review and editing. Yankun Wang helped in conceptualization and supervision.

Corresponding authors

Correspondence to Huiming Tang or Lei Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and materials

Some or all data generated or used during the study are available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 23 kb)

Supplementary material 2 (XLSX 20 kb)

Appendix: Relation between k and ϕ

Appendix: Relation between k and ϕ

The slope k of the curve of σ1 versus σ3 can be obtained by the fitting curve and is expressed as

$$ k = \frac{{\partial \sigma_{1} }}{{\partial \sigma_{3} }} = 1 + \frac{{m_{i} }}{{\left( {m_{i} \frac{{\sigma_{3} }}{{\sigma_{ci} }} + 1} \right)^{0.5} }} $$
(23)

Conventionally, assuming that the cohesion and ϕ of the rock are constant during compression, the M–C criterion is regarded as a linear strength criterion and can be used to characterize the relationship between σ1 and σ3. The ϕ value of the rock is not constant during triaxial compression but gradually changes with σ3 [45]. Under a low minor principal stress, the rock exhibits mainly dilatancy and brittleness, and the microcracks inside the rock coalesce, fragmenting the rock, which leads to an increase in the volume [34, 35, 51, 52]. This phenomenon indicates that the rock has a relatively large ϕ. Under a high minor principal stress, the rock exhibits mainly ductility, and both microcrack opening and shear dilatancy are restricted by σ3, indicating that the rock has a relatively small ϕ [34, 35, 51, 52]. As σ3 increases, the rock shows ductile characteristics. With a further increase in σ3, the rock reaches a critical state, and the friction angle of the rock is basically zero.

The conventional linear M–C criterion for anisotropic intact rocks can be written as

$$ \sigma_{1} = \frac{1 + \sin \phi }{1 - \sin \phi }\sigma_{3} + \sigma_{c\beta } $$
(24)

where β is the stress-to-weak-plane angle observed from the major principal stress direction and σ is the uniaxial compressive strength at angle β.

According to the M–C criterion, the slope k of the curve between σ1 and σ3 can also be obtained by deriving Eq. (24) about σ3:

$$ k = \frac{1 + \sin \phi }{1 - \sin \phi } $$
(25)

Equation (25) can be used to solve for ϕ.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, T., Tang, H., Huang, L. et al. An empirical relation for parameter mi in the Hoek–Brown criterion of anisotropic intact rocks with consideration of the minor principal stress and stress-to-weak-plane angle. Acta Geotech. 16, 551–567 (2021). https://doi.org/10.1007/s11440-020-01039-y

Download citation

Keywords

  • Anisotropic intact rock
  • Hoek–Brown criterion
  • Material parameter m i
  • Minor principal stress
  • Strength
  • Stress-to-weak-plane angle