Mechanical behaviour of granular media in flexible boundary plane strain conditions: experiment and level-set discrete element modelling

Abstract

This article presents the results of level-set (LS) discrete element method (DEM) simulations with experimental comparisons of flexible boundary plane strain tests in granular media. The grain-scale micromechanics at the particle level is captured well with LS-DEM, while the overall macroscopic response of the specimen is in quite good agreement with the simulation results. Onset and evolution of localized zones of shear strain accompanied by a significant amount of grain rotation could be well apprehended in the simulations, while the bulging of the specimen could be noticed in the experimental findings as well as in the model predictions. Multiple zones of shear strain accumulation in conjugate arrays were also observed on subsequent biaxial shearing of the sand specimen. The computational results furnish a quantitative estimate of the evolution of force chains and grain fabric orientation. Initially, these force chains were isotropic which on further deformation oriented in the direction of loading, and the grains aligned themselves in their preferred fabric orientation and remained in that fashion till the end of biaxial loading.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Alshibli KA, Batiste SN, Sture S (2003) Strain localization in sand: plane strain versus triaxial compression. J Geotech Geoenviron Eng 129(6):483–494

    Article  Google Scholar 

  2. 2.

    Alshibli KA, Jarrar MF, Druckrey AM, Al-Raoush RI (2017) Influence of particle morphology on 3D kinematic behavior and strain localization of sheared sand. J Geotech Geoenviron Eng 143(2):04016097

    Article  Google Scholar 

  3. 3.

    Andò E, Viggiani G, Hall S, Desrues J (2012) Experimental micro-mechanics of granular media studied by X-ray tomography: recent results and challenges. Géotech Lett 3(3):142–146. https://doi.org/10.1680/geolett.13.00036

    Article  Google Scholar 

  4. 4.

    Andrade JE, Tu X (2009) Multiscale framework for behaviour prediction in granular media. Mech Mater 41(6):652–669. https://doi.org/10.1016/j.mechmat.2008.12.005

    Article  Google Scholar 

  5. 5.

    Bagi K (1996) Stress and strain in granular assemblies. Mech Mater 22(3):165–177. https://doi.org/10.1016/0167-6636(95)00044-5

    Article  Google Scholar 

  6. 6.

    Bagi K (1999) Some typical examples of tessellation for granular materials. In: Oda M, Balkema AA, Iwashita K (eds) Introduction to mechanics of granular materials. A. A. Balkema, Amsterdam, pp 2–5

    Google Scholar 

  7. 7.

    Bagi K (2006) Analysis of microstructural strain tensors for granular assemblies. Int J Solids Struct 43(10):3166–3184. https://doi.org/10.1016/j.ijsolstr.2005.07.016

    Article  MATH  Google Scholar 

  8. 8.

    Ballhause D, König M, Kröplin B (2008) Modelling fabric-reinforced membranes with the discrete element method. In: Oñate E, Kröplin B (eds) Textile composites and inflatable structures, vol II. Springer, Dordrecht, pp 51–67. https://doi.org/10.1007/978-1-4020-6856-0_4

    Google Scholar 

  9. 9.

    Bardet JP, Proubet J (1992) Shear-band analysis in idealized granular material. J Eng Mech 118(2):397–415. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:2(397)

    Article  Google Scholar 

  10. 10.

    Barreto D, O’Sullivan C, Zdravkovic L (2008) Specimen generation approaches for DEM simulations. In: Burns S, Mayne P, Santamarina J (eds) Proceedings of the international symposium on deformation characteristics of geomaterials. IOS Press

  11. 11.

    Bhattacharya D, Prashant A (2020) Effect of loading boundary conditions in plane strain mechanical response and local deformations in sand specimens. J Geotech Geoenviron Eng. https://doi.org/10.1061/(asce)gt.1943-5606.0002341

    Article  Google Scholar 

  12. 12.

    Bolton MD (1986) The strength and dilatancy of sands. Géotechnique 36(1):65–78. https://doi.org/10.1680/geot.1986.36.1.65

    Article  Google Scholar 

  13. 13.

    Borja RI (2002) Bifurcation of elastoplastic solids to shear band mode at finite strain. Comput Methods Appl Mech Eng 191(46):5287–5314. https://doi.org/10.1016/S0045-7825(02)00459-0

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Borja RI (2002) Finite element simulation of strain localization with large deformation: capturing strong discontinuity using a Petrov–Galerkin multiscale formulation. Comput Methods Appl Mech Eng 191(27–28):2949–2978. https://doi.org/10.1016/S0045-7825(02)00218-9

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Borja RI, Song X, Rechenmacher AL, Abedi S, Wu W (2013) Shear band in sand with spatially varying density. J Mech Phys Solids 61(1):219–234

  16. 16.

    Cho GC, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J Geotech Geoenviron Eng 132(5):591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)

    Article  Google Scholar 

  17. 17.

    Chu J, Lo SC (1993) On the measurement of critical state parameters of dense granular soils. Geotech Test J 16(1):27–35. https://doi.org/10.1520/GTJ10264J

    Article  Google Scholar 

  18. 18.

    Chu J, Lo SC, Lee IK (1992) Strain-softening behavior of granular soil in strain-path testing. J Geotech Eng 118(2):191–208. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:2(191)

    Article  Google Scholar 

  19. 19.

    Chu J, Wanatowski D (2008) Instability conditions of loose sand in plane strain. J Geotech Geoenviron Eng 134(1):136–142

    Article  Google Scholar 

  20. 20.

    Chu J, Wanatowski D (2009) Effect of loading mode on strain softening and instability behavior of sand in plane-strain tests. J Geotech Geoenviron Eng 135(1):108–120. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(108)

    Article  Google Scholar 

  21. 21.

    Cil MB, Alshibli KA (2014) 3D analysis of kinematic behavior of granular materials in triaxial testing using DEM with flexible membrane boundary. Acta Geotech 9(2):287–298. https://doi.org/10.1007/s11440-013-0273-0

    Article  Google Scholar 

  22. 22.

    Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  23. 23.

    Dafalias YF, Popov EP (1975) A model of nonlinearly hardening materials for complex loading. Acta Mech 21(3):173–192

    MATH  Article  Google Scholar 

  24. 24.

    De Borst R, Mühlhaus HB (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng 35(3):521–539

    MATH  Article  Google Scholar 

  25. 25.

    De Borst R, Pamin J (1996) Some novel developments in finite element procedures for gradient-dependent plasticity. Int J Numer Methods Eng 39(14):2477–2505

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Desrues J (1998) Localization patterns in ductile and brittle geomaterials. In: de Borst R, van der Giessen E (eds) Material instabilities in solids. Wiley, New York, pp 137–158

    Google Scholar 

  27. 27.

    Desrues J, Lanier J, Stutz P (1985) Localization of the deformation in tests on sand sample. Eng Fract Mech 21(4):909–921

    Article  Google Scholar 

  28. 28.

    Desrues J, Viggiani G (2004) Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int J Numer Anal Methods Geomech 28(4):279–321

    Article  Google Scholar 

  29. 29.

    Drescher A, Vardoulakis I (1982) Geometric softening in triaxial tests on granular material. Géotechnique 32(4):291–303. https://doi.org/10.1680/geot.1982.32.4.291

    Article  Google Scholar 

  30. 30.

    Drescher A, Vardoulakis I, Han C (1990) A biaxial apparatus for testing soils. Geotech Test J 13(3):226–234

    Article  Google Scholar 

  31. 31.

    Ehlers W, Scholz B (2007) An inverse algorithm for the identification and the sensitivity analysis of the parameters governing micropolar elasto-plastic granular material. Arch Appl Mech 77(12):911–931

    MATH  Article  Google Scholar 

  32. 32.

    Einav I, Puzrin AM (2004) Pressure-dependent elasticity and energy conservation in elastoplastic models for soils. J Geotech Geoenviron Eng 130(1):81–92. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(81)

    Article  Google Scholar 

  33. 33.

    Finno RJ, Harris WW, Mooney MA, Viggiani G (1996) Strain localization and undrained steady state of sand. J Geotech Eng 122(6):462–473

    Article  Google Scholar 

  34. 34.

    Finno RJ, Harris WW, Mooney MA, Viggiani G (1997) Shear bands in plane strain compression of loose sand. Géotechnique 47(1):149–165

    Article  Google Scholar 

  35. 35.

    Gajo A, Bigoni D, Wood DM (2004) Multiple shear band development and related instabilities in granular materials. J Mech Phys Solids 52(12):2683–2724. https://doi.org/10.1016/j.jmps.2004.05.010

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Gao R, Du X, Zeng Y, Li Y, Yan J (2012) A new method to simulate irregular particles by discrete element method. J Rock Mech Geotech Eng 4(3):276–281. https://doi.org/10.3724/SP.J.1235.2012.00276

    Article  Google Scholar 

  37. 37.

    Garcia X, Latham JP, Xiang JS, Harrison JP (2009) A clustered overlapping sphere algorithm to represent real particles in discrete element modelling. Géotechnique 59(9):779–784. https://doi.org/10.1680/geot.8.T.037

    Article  Google Scholar 

  38. 38.

    Goddard JD (2001) Delaunay triangulation of granular media. In: Bicanic N (ed) Proceedings of ICADD-4, 4th international conference on analysis of discontinuous deformation, Glasgow, University of Glasgow

  39. 39.

    Graham J, Houlsby GT (1983) Anisotropic elasticity of a natural clay. Géotechnique 33(2):165–180. https://doi.org/10.1680/geot.1983.33.2.165

    Article  Google Scholar 

  40. 40.

    Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 60(5):315–322. https://doi.org/10.1680/geot.2010.60.5.315

    Article  Google Scholar 

  41. 41.

    Hall SA, Wood DM, Ibraim E, Viggiani G (2010) Localised deformation patterning in 2D granular materials revealed by digital image correlation. Granular Matter 12(1):1–14. https://doi.org/10.1007/s10035-009-0155-1

    Article  Google Scholar 

  42. 42.

    Han C, Drescher A (1993) Shear bands in biaxial tests on dry coarse sand. Soils Found 33(1):118–132

    Article  Google Scholar 

  43. 43.

    Hasan A, Alshibli K (2012) Three dimensional fabric evolution of sheared sand. Granular Matter 14(4):469–482

    Article  Google Scholar 

  44. 44.

    Hettler A, Vardoulakis I (1984) Behaviour of dry sand tested in a large triaxial apparatus. Géotechnique 34(2):183–197. https://doi.org/10.1680/geot.1984.34.2.183

    Article  Google Scholar 

  45. 45.

    Hurley R, Marteau E, Ravichandran G, Andrade JE (2014) Extracting inter-particle forces in opaque granular materials: beyond photoelasticity. J Mech Phys Solids 63:154–166. https://doi.org/10.1016/j.jmps.2013.09.013

    Article  Google Scholar 

  46. 46.

    Hurley RC, Hall SA, Andrade JE, Wright J (2016) Quantifying interparticle forces and heterogeneity in 3D granular materials. Phys Rev Lett 117(9):098005

    Article  Google Scholar 

  47. 47.

    Imseeh WH, Druckrey AM, Alshibli KA (2018) 3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography. Granular Matter 20(2):24

    Article  Google Scholar 

  48. 48.

    Kabilamany K, Ishihara K (1990) Stress dilatancy and hardening laws for rigid granular model of sand. Soil Dyn Earthq Eng 9(2):66–77. https://doi.org/10.1016/S0267-7261(05)80020-X

    Article  Google Scholar 

  49. 49.

    Kanatani K (1984) Distribution of directional data and fabric tensors. Int J Eng Sci 22(2):149–164

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Kawamoto R, Andò E, Viggiani G, Andrade JE (2016) Level set discrete element method for three-dimensional computations with triaxial case study. J Mech Phys Solids 91:1–13. https://doi.org/10.1016/j.jmps.2016.02.021

    MathSciNet  Article  Google Scholar 

  51. 51.

    Kawamoto R, Andò E, Viggiani G, Andrade JE (2018) All you need is shape: predicting shear banding in sand with LS-DEM. J Mech Phys Solids 111:375–392. https://doi.org/10.1016/j.jmps.2017.10.003

    Article  Google Scholar 

  52. 52.

    Lade PV (1977) Elasto-plastic stress–strain theory for cohesionless soil with curved yield surfaces. Int J Solids Struct 13(11):1019–1035. https://doi.org/10.1016/0020-7683(77)90073-7

    Article  MATH  Google Scholar 

  53. 53.

    Lade PV, Duncan JM (1975) Elastoplastic stress–strain theory for cohesionless soil. J Geotech Geoenviron Eng 101(GT10):1037–1053

    Google Scholar 

  54. 54.

    Lambe TW, Whitman RV (2008) Soil mechanics SI version. Wiley, Hoboken

    Google Scholar 

  55. 55.

    Lasry D, Belytschko T (1988) Localization limiters in transient problems. Int J Solids Struct 24(6):581–597. https://doi.org/10.1016/0020-7683(88)90059-5

    Article  MATH  Google Scholar 

  56. 56.

    Laursen TA (2013) Computational contact and impact mechanics: fundamentals of modelling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

    Google Scholar 

  57. 57.

    Li X, Li XS (2009) Micro–macro quantification of the internal structure of granular materials. J Eng Mech 135(7):641–656

    Article  Google Scholar 

  58. 58.

    Li XS, Dafalias YF (2002) Constitutive modelling of inherently anisotropic sand behavior. J Geotech Geoenviron Eng 128(10):868–880. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)

    Article  Google Scholar 

  59. 59.

    Li XS, Dafalias YF (2004) A constitutive framework for anisotropic sand including non-proportional loading. Géotechnique 54(1):41–55

    Article  Google Scholar 

  60. 60.

    Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254. https://doi.org/10.1109/TIP.2010.2069690

    MathSciNet  Article  MATH  Google Scholar 

  61. 61.

    Lim KW, Andrade JE (2014) Granular element method for three-dimensional discrete element calculations. Int J Numer Anal Methods Geomech 38(2):167–188. https://doi.org/10.1002/nag.2203

    Article  Google Scholar 

  62. 62.

    Lim KW, Krabbenhoft K, Andrade JE (2014) On the contact treatment of non-convex particles in the granular element method. Comput Part Mech 1(3):257–275. https://doi.org/10.1007/s40571-014-0019-2

    Article  Google Scholar 

  63. 63.

    Li L, Marteau E, Andrade JE (2019) Capturing the inter-particle force distribution in granular material using LS-DEM. Granular Matter 21(3):43

    Article  Google Scholar 

  64. 64.

    Marachi ND, Duncan JM, Chan CK, Seed HB (1981) Plane-strain testing of sand. In: Yong RN, Townsend FC (eds) Laboratory shear strength of soil. ASTM International, West Conshohocken, pp 294–302

    Google Scholar 

  65. 65.

    Marteau E, Andrade J (2017) Measuring force-chains in opaque granular matter under shear. In: International workshop on bifurcation and degradation in geomaterials. Springer, Cham, pp 441–444. https://doi.org/10.1007/978-3-319-56397-8_55

  66. 66.

    Mital U, Kawamoto R, Andrade JE (2019) Effect of fabric on shear wave velocity in granular soils. Acta Geotech 15:1189–1203

    Article  Google Scholar 

  67. 67.

    Mühlhaus HB, Vardoulakis I (1987) The thickness of shear bands in granular materials. Géotechnique 37(3):271–283. https://doi.org/10.1680/geot.1987.37.3.271

    Article  Google Scholar 

  68. 68.

    Mühlhaus HB, De Borst R, Aifantis EC (1991) Constitutive models and numerical analyses for inelastic materials with microstructure. Comput Methods Adv Geomech 7:377–385

    Google Scholar 

  69. 69.

    Muir Wood D (2007) The magic of sands—the 20th Bjerrum Lecture presented in Oslo, 25 November 2005. Can Geotech J 44(11):1329–1350. https://doi.org/10.1139/T07-060

    Article  Google Scholar 

  70. 70.

    Mukherjee M, Gupta A, Prashant A (2016) Drained instability analysis of sand under biaxial loading using a 3D material model. Comput Geotech 79:130–145

    Article  Google Scholar 

  71. 71.

    Oda M (1972) Initial fabrics and their relations to mechanical properties of granular material. Soils Found 12(1):17–36. https://doi.org/10.3208/sandf1960.12.17

    MathSciNet  Article  Google Scholar 

  72. 72.

    Osher S, Fedkiw R (2006) Level set methods and dynamic implicit surfaces, vol 153. Springer, Berlin

    Google Scholar 

  73. 73.

    O’Sullivan C (2014) Particulate discrete element modelling: a geomechanics perspective. CRC Press, Boca Raton

    Google Scholar 

  74. 74.

    Prashant A, Penumadu D (2004) Influence of specimen shape and test boundary conditions on the stress–strain behaviour of soil. In: Proceedings 57th Canadian geotechnical conference and 5th joint IAH-CNC/CGS conference, 24–28

  75. 75.

    Prashant A, Penumadu D (2004) Effect of intermediate principal stress on overconsolidated kaolin clay. J Geotech Geoenviron Eng 130(3):284–292

    Article  Google Scholar 

  76. 76.

    Prevost JH, Hoeg K (1975) Effective stress–strain-strength model for soils. J Geotech Geoenviron Eng 101:259–278

    Google Scholar 

  77. 77.

    Radjai F, Roux JN, Daouadji A (2017) Modeling granular materials: century-long research across scales. J Eng Mech 143(4):04017002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001196

    Article  Google Scholar 

  78. 78.

    Rechenmacher AL, Finno RJ (2004) Digital image correlation to evaluate shear banding in dilative sands. Geotech Test J 27(1):13–22. https://doi.org/10.1520/GTJ11263J

    Article  Google Scholar 

  79. 79.

    Rechenmacher AL (2006) Grain-scale processes governing shear band initiation and evolution in sands. J Mech Phys Solids 54(1):22–45

    MATH  Article  Google Scholar 

  80. 80.

    Rechenmacher A, Abedi S, Chupin O (2010) Evolution of force chains in shear bands in sands. Géotechnique 60(5):343–351

    Article  Google Scholar 

  81. 81.

    Rechenmacher AL, Abedi S, Chupin O, Orlando AD (2011) Characterization of mesoscale instabilities in localized granular shear using digital image correlation. Acta Geotech 6(4):205–217

    Article  Google Scholar 

  82. 82.

    Rice JR (1976) The localization of plastic deformation. In: Koiter WT (ed) Proceedings of the 14th international congress on theoretical and applied mechanics, vol 1, Delft, North Holland Publishing Co., pp 207–220

  83. 83.

    Roscoe KH (1970) The influence of strains in soil mechanics. Géotechnique 20(2):129–170. https://doi.org/10.1680/geot.1970.20.2.129

    Article  Google Scholar 

  84. 84.

    Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4):601–614

    Article  Google Scholar 

  85. 85.

    Rothenburg L, Bathurst RJ (1991) Numerical simulation of idealized granular assemblies with plane elliptical particles. Comput Geotech 11(4):315–329. https://doi.org/10.1016/0266-352X(91)90015-8

    Article  Google Scholar 

  86. 86.

    Rowe PW (1962) The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc R Soc Lond A 269(1339):500–527. https://doi.org/10.1098/rspa.1962.0193

    Article  Google Scholar 

  87. 87.

    Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394. https://doi.org/10.1016/0022-5096(75)90001-0

    Article  Google Scholar 

  88. 88.

    Sachan A (2011) Shear testing data of soil: a function of boundary friction in triaxial setup. Indian Geotech J 41(3):68–176

    Google Scholar 

  89. 89.

    Sachan A, Penumadu D (2007) Strain localization in solid cylindrical clay specimens using digital image analysis (DIA) technique. Soils Found 47(1):67–78

    Article  Google Scholar 

  90. 90.

    Satake M (1982) Fabric tensor in granular materials. In: IUTAM conference on deformation and flow of granular materials, pp 63–68. AA Balkema

  91. 91.

    Schofield A, Wroth P (1968) Critical state soil mechanics. McGraw-Hill, London

    Google Scholar 

  92. 92.

    Sandeep CS, Senetakis K (2017) Exploring the micromechanical sliding behavior of typical quartz grains and completely decomposed volcanic granules subjected to repeating shearing. Energies 10(3):370

    Article  Google Scholar 

  93. 93.

    Sandeep CS, He H, Senetakis K (2018) An experimental micromechanical study of sand grain contacts behavior from different geological environments. Eng Geol 246:176–186

    Article  Google Scholar 

  94. 94.

    Sandeep CS, Senetakis K (2018) Grain-scale mechanics of quartz sand under normal and tangential loading. Tribol Int 117:261–271

    Article  Google Scholar 

  95. 95.

    Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge

    Google Scholar 

  96. 96.

    Silbert LE, Ertaş D, Grest GS, Halsey TC, Levine D, Plimpton SJ (2001) Granular flow down an inclined plane: bagnold scaling and rheology. Phys Rev E 64(5):051302

    Article  Google Scholar 

  97. 97.

    Sulem J, Vardoulakis IG (2014) Bifurcation analysis in geomechanics. CRC Press, Boca Raton

    Google Scholar 

  98. 98.

    Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R (2014) XSEDE: accelerating scientific discovery. Comput Sci Eng 16(5):62–74. https://doi.org/10.1109/MCSE.2014.80

    Article  Google Scholar 

  99. 99.

    Vardoulakis I, Goldscheider M, Gudehus G (1978) Formation of shear bands in sand bodies as a bifurcation problem. Int J Numer Anal Methods Geomech 2(2):99–128. https://doi.org/10.1002/nag.1610020203

    Article  Google Scholar 

  100. 100.

    Vermeer PA (1978) A double hardening model for sand. Géotechnique 28(4):413–433. https://doi.org/10.1680/geot.1978.28.4.413

    Article  Google Scholar 

  101. 101.

    Viggiani G, Hall S (2012) Full-field measurements in experimental geomechanics: historical perspective, current trends and recent results. In: Viggiani G, Hall S, Romero E (eds) ALERT Doctoral School 2012: advanced experimental techniques in geomechanics. ALERT Geomaterials

  102. 102.

    Vlahinić I, Andò E, Viggiani G, Andrade JE (2014) Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images. Granular Matter 16(1):9–21. https://doi.org/10.1007/s10035-013-0460-6

    Article  Google Scholar 

  103. 103.

    Vlahinić I, Kawamoto R, Andò E, Viggiani G, Andrade JE (2017) From computed tomography to mechanics of granular materials via level set bridge. Acta Geotech 12(1):85–95. https://doi.org/10.1007/s11440-016-0491-3

    Article  Google Scholar 

  104. 104.

    Walton OR, Braun RL (1993) Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters. In: Joint DOE/NSF workshop on flow of particulates and fluids, Ithaca, NY

  105. 105.

    Wanatowski D, Chu J (2005) Stress–strain behavior of a granular fill measured by a new plane-strain apparatus. Geotech Test J 29(2):149–157

    Google Scholar 

  106. 106.

    Wood DM (2019) Desiderata Geotechnica: halting steps. In: Wu W (ed) Desiderata geotechnica. Springer, Cham, pp 119–124

    Google Scholar 

  107. 107.

    Yan B, Regueiro RA, Sture S (2010) Three-dimensional ellipsoidal discrete element modeling of granular materials and its coupling with finite element facets. Eng Comput 27(4):519–550. https://doi.org/10.1108/02644401011044603

    Article  MATH  Google Scholar 

  108. 108.

    Zhao J, Gao Z (2016) Unified anisotropic elastoplastic model for sand. J Eng Mech 142(1):04015056. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000962

    Article  Google Scholar 

  109. 109.

    Zheng J, Hryciw RD (2017) An image-based clump library for DEM simulations. Granular Matter 19(2):26. https://doi.org/10.1007/s10035-017-0713-x

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Geotechnical Research and Innovative Practices (GRIP) project of the Indian Institute of Technology Gandhinagar is gratefully acknowledged by the first author. The first author also thanks Dr. Jason Marshall for various insightful discussions related to computational aspects. Use of Extreme Science and Engineering Discovery Environment (XSEDE) supported by the National Science Foundation Grant Number ACI-1548562 [98] is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amit Prashant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, D., Kawamoto, R., Karapiperis, K. et al. Mechanical behaviour of granular media in flexible boundary plane strain conditions: experiment and level-set discrete element modelling. Acta Geotech. (2020). https://doi.org/10.1007/s11440-020-00996-8

Download citation

Keywords

  • Discrete element method
  • Flexible boundaries
  • Granular media
  • Level set
  • Plane strain