A feasible approach to predicting time-dependent bearing performance of jacked piles from CPTu measurements


In this paper, a simple but feasible approach is proposed to predict the time-dependent load carrying behaviours of jacked piles from CPTu measurements. The corrected cone resistance, which considers the unequal area of the cone rod and the cone, is used to determine the soil parameters used in the proposed approach. The pile installation effects on the changes in the stress state of the surrounding soil are assessed by an analytical solution to undrained expansion of a cylindrical cavity in K0-consolidated anisotropic clayey soil. Considering the similarity and scale effects between the piezocone and the pile, the CPTu measurements are properly incorporated in the shaft and end resistance factors as well as in the load-transfer curves to predict the time-dependent load carrying behaviours of the pile. Centrifuge model tests are conducted and the measured load carrying behaviours of the model piles are compared with the predictions to validate the proposed approach. The proposed approach not only greatly saves the time of conducting time-consuming pile load tests, but also effectively avoids solving the complex partial differential equations involved in the consolidation analysis, and hence is feasible enough to determine the time-dependent load carrying behaviours of jacked piles in clay.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


\( A,B \) :

Parameters for simplifying expression

\( A_{1} , A_{2} \) :

Cross-sectional areas of the cone rod and cone shaft

\( A_{\text{p}} \) :

Cross-sectional area of pile

\( A_{{{\text{s}},i}} \) :

Area of pile shaft in soil layer \( i \)

\( a \) :

Net area ratio

\( a_{\text{b}} \left( t \right),a_{{{\text{s}},{\text{z}}}} \left( t \right) \) :

Time-dependent model parameters of the load-transfer curve for pile toe and shaft, respectively

\( b_{\text{b}} \left( t \right),b_{{{\text{s}},{\text{z}}}} \left( t \right) \) :

Time-dependent model parameters of the load-transfer curve for pile toe and shaft, respectively

\( C_{\text{q}} \left( t \right) \) :

Time-dependent pile toe resistance factor

\( c_{\text{h}} \) :

Horizontal consolidation coefficient

\( D_{\text{pile}} ,D_{\text{CPTu}} \) :

Diameters of pile and piezocone

\( e \) :

Void ratio

\( F_{\text{su}} \left( t \right), F_{\text{qu}} \left( t \right) \) :

Time-dependent pile shaft bearing capacity and pile toe capacity

\( f_{\text{s}} \) :

Sleeve friction

\( f_{\text{su}} \) :

Ultimate shaft resistance

\( f_{{{\text{su}},i}} \left( t \right) \) :

Time-dependent ultimate shaft resistance in layer \( i \)

\( f_{{{\text{su}},{\text{z}}}} \left( t \right) \) :

Time-dependent ultimate shaft resistance at depth z

\( G \) :

Shear modulus

\( G_{0} \) :

In situ shear modulus

\( K_{0} \) :

Coefficient of earth pressure at rest

\( K_{{0,{\text{b}}}} \left( t \right) \) :

Time-dependent initial stiffness of pile toe

\( K_{{0,{\text{z}}}} \left( t \right) \) :

Time-dependent initial stiffness of the soil column with unit length at the pile–soil interface

\( k_{\text{h}} \) :

Horizontal coefficient of permeability

\( L \) :

Length of pile

\( M \) :

Slope of critical state line

\( N_{\text{c}} \) :

Pile toe resistance factor

\( N_{\text{ke}} \) :

Cone resistance factor

\( {\text{OCR}} \) :

Overconsolidation ratio

\( p_{0}^{{\prime }} \) :

Far-field geostatic mean effective stress

\( p^{{\prime }} \left( t \right) \) :

Mean effective stress of the soil adjacent to the pile shaft during consolidation

\( p_{\text{f}}^{{\prime }} \) :

Mean effective stress of soil in the vicinity of the pile immediately after pile installation

\( Q_{\text{u}} \left( t \right) \) :

Time-dependent total load carrying capacity

\( q_{\text{b}} \left( t \right) \) :

Mobilized resistance at pile toe

\( q_{\text{bu}} \) :

Ultimate pile toe resistance

\( q_{\text{bu}} \left( t \right) \) :

Pile toe resistance at any time after pile installation

\( q_{\text{c}} \) :

Cone tip resistance

\( q_{\text{e}} \) :

Effective cone tip resistance

\( \bar{q}_{\text{e}} \) :

Average effective cone resistance in pile toe influence zone

\( q_{\text{t}} \) :

Corrected cone tip resistance

\( R_{\text{f}} \) :

Failure ratio

\( r \) :

Radial distance from pile axis

\( r_{\text{m}} \) :

Limiting radius beyond which shear stress induced by pile loading is negligible

\( r_{\text{p}} \) :

Pile radius

\( \gamma_{\text{w}} \) :

Unit weight of water

\( r_{\text{y}} \) :

Radius of plastic zone developed around pile

\( s_{{{\text{u}},{\text{tc}}}} , s_{{{\text{u}},{\text{ps}}}} \) :

Undrained shear strengths of soil under triaxial compression condition and plane strain condition, respectively

\( T \) :

Non-dimensional time

\( T_{\text{pile}} ,T_{\text{CPTu}} \) :

Non-dimensional time for dissipation of normalized excess pore pressure around the pile and piezocone, respectively

\( t_{\text{pile}} ,t_{\text{CPTu}} \) :

Real consolidation time of the soil around the pile and piezocone

\( U_{\text{pile}} \left( t \right),U_{\text{pile}} \left( t \right) \) :

Degrees of consolidation of the soil around the pile and piezocone

\( u \) :

Pore water pressure

\( u_{1} ,u_{2} ,u_{3} \) :

Measured pore water pressures at cone tip, shoulder and shaft

\( v^{{\prime }} \) :

Effective Poisson’s ratio

\( W_{\text{b}} \) :

Displacement at pile toe

\( W_{{{\text{s}},z}} \) :

Pile–soil relative displacement at depth \( z \)

\( \alpha \) :

Shaft resistance factor of total stress method

\( \alpha_{\text{c}} \left( t \right) \) :

Time-dependent shaft resistance factor

\( \beta \) :

Shaft resistance factor of effective stress method

\( \Delta u \) :

Excess pore water pressure

\( \Delta u_{\text{pile}} ,\Delta u_{\text{CPTu}} \) :

Excess pore water pressure around the pile and the piezocone

\( \Delta u_{\text{t}} \) :

Limit excess pore water pressure developed at the wall of an expanding spherical cavity

\( \eta_{0} \) :

Initial stress ratio of soil

\( \eta_{\text{y}}^{*} \) :

Relative stress ratio at the elastic–plastic boundary

\( \kappa \) :

Slope of swelling line in \( e \)-ln \( p^{{\prime }} \) plane

\( \Uplambda \) :

Plastic volumetric strain ratio

\( \lambda \) :

Slope of compression line in \( e \)-ln \( p^{{\prime }} \) plane

\( \upsilon \) :

Specific volume

\( \xi \) :

Parameter for simplifying expression

\( \rho_{\text{s}} \) :

Ratio of undrained shear strength at any given time after installation to in situ undrained shear strength

\( \rho_{\text{G}} \) :

Ratio of shear modulus at any given time after installation to in situ shear modulus

\( \sigma_{\text{r}}^{{\prime }} ,\sigma_{\text{z}}^{{\prime }} \) :

Radial and vertical effective stresses

\( \sigma_{\text{u}} \) :

Limit expansion pressure

\( \sigma_{{{\text{v}}0}}^{{\prime }} \) :

Effective vertical stress

\( \sigma_{\text{rf}}^{\prime} ,\sigma_{\text{zf}}^{\prime} \) :

Radial and vertical effective stresses at failure

\( \tau_{\text{rzf}} \) :

Shear stress at failure

\( \tau_{{{\text{s}},{\text{z}}}} \left( t \right) \) :

Mobilized shaft shear resistance

\( \varphi^{{\prime }} \) :

Internal effective friction angle of soil

\( \chi \) :

Ratio of soil shear modulus at middle depth to that of the pile toe

\( \psi_{\text{f}} \) :

Stress-transformed parameter under plane strain condition


  1. 1.

    Abufarsakh MY, Titi HH (2004) Assessment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles. J Geotech Geoenviron Eng 130(9):935–944

    Article  Google Scholar 

  2. 2.

    Abufarsakh MY, Rosti F, Souri A (2015) Evaluating pile installation and subsequent thixotropic and consolidation effects on setup by numerical simulation for full-scale pile load tests. Can Geotech J 52(11):1734–1746

    Google Scholar 

  3. 3.

    Agaiby S, Mayne PW (2018) Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site. Can Geotech J 55(12):1781–1794

    Google Scholar 

  4. 4.

    Augustesen AH (2006) The effects of time on soil behaviour and pile capacity. Doctoral dissertation, Aalborg University, Department of Civil Engineering

  5. 5.

    Baligh MM (1985) Strain path method. J Geotech Eng 111(9):1108–1136

    Google Scholar 

  6. 6.

    Basu P, Prezzi M, Salgado R, Chakraborty T (2014) Shaft resistance and setup factors for piles jacked in clay. J Geotech Geoenviron Eng 140(3):04013026

    Google Scholar 

  7. 7.

    Bond AJ (1989) Behaviour of displacement piles in overconsolidated clays. Ph.D. thesis, Imperial College London, London, UK

  8. 8.

    Bullock PJ, Schmertmann JH, McVay MC, Townsend FC (2005) Side shear setup. I: test piles driven in Florida. J Geotech Geoenviron Eng 131(3):292–300

    Google Scholar 

  9. 9.

    Burns SE, Mayne PW (1995) Coefficient of consolidation (ch) from type 2 piezocone dissipation in overconsolidated clays. In: Proceedings, International Symposium on Cone Penetration Testing (CPT ‘95), Linkøping, Sweden, vol 2, pp 137–142

  10. 10.

    Burns SE, Mayne PW (1998) Monotonic and dilatory pore-pressure decay during piezocone tests in clay. Can Geotech J 35(6):1063–1073

    Google Scholar 

  11. 11.

    Cai GJ, Liu SY, Tong LY, Du GY (2009) Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles. Eng Geol 104(3–4):211–222

    Google Scholar 

  12. 12.

    Cao LF, Teh CI, Chang MF (2001) Undrained cavity expansion in modified Cam clay I: theoretical analysis. Géotechnique 51(4):323–334

    Google Scholar 

  13. 13.

    Chang MF, Teh CI, Cao LF (2001) Undrained cavity expansion in modified Cam clay II: application to the interpretation of the piezocone test. Géotechnique 51(4):335–350

    Google Scholar 

  14. 14.

    Chen JJ, Zhang LY (2013) Effect of spatial correlation of cone tip resistance on the bearing capacity of piles. J Geotech Geoenviron Eng 139(3):494–500

    MathSciNet  Google Scholar 

  15. 15.

    Chow FC (1997) Investigations into the behaviour of displacement piles for offshore foundations. Imperial College London, London

    Google Scholar 

  16. 16.

    Clough GW, Duncan JM (1971) Finite element analyses of retaining wall behavior. J Soil Mech Found Div ASCE 97(12):1657–1673

    Google Scholar 

  17. 17.

    Dafalias YF (1987) An anisotropic critical state clay plasticity model. In: Proceedings of the constitutive laws for engineering materials: theory and applications, Tucson, pp 513–521

  18. 18.

    De Chaunac H, Holeyman A (2018) Numerical analysis of the set-up around the shaft of a closed-ended pile driven in clay. Géotechnique 68(4):332–344

    Google Scholar 

  19. 19.

    De Kuiter J, Beringen FL (1979) Pile foundations for large North Sea structures. Mar Georesour Geotechnol 3(3):267–314

    Google Scholar 

  20. 20.

    Doherty P, Gavin K (2011) The shaft capacity of displacement piles in clay: a state of the art review. Geotech Geol Eng 29(4):389–410

    Google Scholar 

  21. 21.

    Eslami A, Fellenius BH (1997) Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Can Geotech J 34(6):886–904

    Google Scholar 

  22. 22.

    Fateh AMA, Eslami A, Fahimifar A (2017) Direct CPT and CPTu methods for determining bearing capacity of helical piles. Mar Georesour Geotechnol 35(2):193–207

    Google Scholar 

  23. 23.

    Guo WD (2000) Visco-elastic consolidation subsequent to pile installation. Comput Geotech 26(2):113–144

    Google Scholar 

  24. 24.

    Hesham M, Naggar E, Sakr M (2000) Evaluation of axial performance of tapered piles from centrifuge tests. Can Geotech J 37(6):1295–1308

    Google Scholar 

  25. 25.

    Hu Z, McVay M, Bloomquist D, Horhota D, Lai P (2012) New ultimate pile capacity prediction method based on cone penetration test (CPT). Can Geotech J 49(8):961–967

    Google Scholar 

  26. 26.

    Huang W, Sheng D, Sloan SW, Yu HS (2004) Finite element analysis of cone penetration in cohesionless soil. Comput Geotech 31(7):517–528

    Google Scholar 

  27. 27.

    Khanmohammadi M, Fakharian K (2017) Numerical modelling of pile installation and set-up effects on pile shaft capacity. Int J Geotech Eng 13:484–498

    Google Scholar 

  28. 28.

    Khanmohammadi M, Fakharian K (2018) Numerical simulation of soil stress state variations due to mini-pile penetration in clay. Int J Civ Eng 16(4):409–419

    Google Scholar 

  29. 29.

    Kraft LM, Focht JA, Amerasinghe SF (1981) Friction capacity of piles driven into clay. J Geotech Geoenviron Eng 107(GT 11):1521–1541

    Google Scholar 

  30. 30.

    Kraft LM, Ray RP, Kakaaki T (1981) Theoretical t–z curves. J Geotech Eng Div 107(11):1543–1561

    Google Scholar 

  31. 31.

    Lee KM, Xiao ZR (2001) A simplified nonlinear approach for pile group settlement analysis in multilayered soils. Can Geotech J 38(5):1063–1080

    Google Scholar 

  32. 32.

    Li L, Li JP, Sun DA (2016) Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay. Comput Geotech 73:83–90

    Google Scholar 

  33. 33.

    Li L, Li JP, Sun DA, Gong WB (2017) Analysis of time-dependent bearing capacity of a driven pile in clayey soils by total stress method. Int J Geomech 17(7):04016156

    Google Scholar 

  34. 34.

    Li L, Li JP, Sun DA, Gong WB (2017) Semi-analytical approach for time-dependent load–settlement response of a jacked pile in clay strata. Can Geotech J 54(12):1682–1692

    Google Scholar 

  35. 35.

    Lunne T, Eidsmoen T, Gillespie D, Howland JD (1986) Laboratory and field evaluation of cone penetrometers. In: Proceedings of the ASCE specialty conference on use of in situ tests in geotechnical engineering, Blacksburg, Virginia, pp 714–729

  36. 36.

    Matsuoka H (1976) On the significance of the “spatial mobilized plane”. Soils Found 16(1):91–100

    Google Scholar 

  37. 37.

    Matsuoka H, Sun DA (2006) The SMP concept-based 3D constitutive models for geomaterials. Taylor and Francis, Leiden

    Google Scholar 

  38. 38.

    Matsuoka H, Yao Y, Sun D (1999) The Cam-clay models revised by the SMP criterion. Soils Found 39(1):81–95

    Google Scholar 

  39. 39.

    Mayne PW (1991) Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts. Soils Found 31(2):65–76

    MathSciNet  Google Scholar 

  40. 40.

    Mayne PW, Elhakim A (2002) Axial pile response evaluation by geophysical piezocone tests. In: Proceedings of the 9th international conference on piling and deep foundations, DFI, Nice, Presses de l’ecole nationale des Ponts et chaussees, pp 543–550

  41. 41.

    Mayne PW, Holtz RD (1988) Profiling stress history from piezocone soundings. Soils Found 28(1):16–28

    Google Scholar 

  42. 42.

    Mayne PW, Kulhawy FH (1982) K0-OCR relationships in soil. J Geotech Eng Div 108(6):851–872

    Google Scholar 

  43. 43.

    Mayne PW, Niazi FS (2009) Evaluating axial elastic pile response from cone penetration tests (The 2009 Michael W. O’Neill Lecture). DFI J J Deep Found Inst 3(1):3–12

    Google Scholar 

  44. 44.

    Motta E (1994) Approximate elastic-plastic solution for axially loaded piles. J Geotech Eng 120(9):1616–1624

    Google Scholar 

  45. 45.

    Niazi FS, Mayne PW (2013) Cone penetration test based direct methods for evaluating static axial capacity of single piles. Geotech Geol Eng 31(4):979–1009

    Google Scholar 

  46. 46.

    Niazi FS, Mayne PW (2016) CPTu-based enhanced UniCone method for pile capacity. Eng Geol 212:21–34

    Google Scholar 

  47. 47.

    Randolph MF (2003) Science and empiricism in pile foundation design. Géotechnique 53(10):847–876

    Google Scholar 

  48. 48.

    Randolph MF, Wroth CP (1979) An analysis of the vertical deformation of pile groups. Géotechnique 29(4):423–439

    Google Scholar 

  49. 49.

    Randolph MF, Wroth CP (1979) An analytical solution for the consolidation around a driven pile. Int J Numer Anal Methods Geomech 3(3):217–229

    MATH  Google Scholar 

  50. 50.

    Randolph MF, Wroth CP (1981) Application of the failure state in undrained simple shear to the shaft capacity of driven piles. Géotechnique 31(1):143–157

    Google Scholar 

  51. 51.

    Randolph MF, Carter JP, Wroth CP (1979) Driven piles in clay-the effects of installation and subsequent consolidation. Géotechnique 29(4):361–393

    Google Scholar 

  52. 52.

    Robertson PK, Woeller DJ, Gillespie D (1990) Evaluation of excess pore pressures and drainage conditions around driven piles using the cone penetration test with pore pressure measurements. Can Geotech J 27(2):249–254

    Google Scholar 

  53. 53.

    Roy M, Blanchet R, Tavenas F, Rochelle PL (1981) Behaviour of a sensitive clay during pile driving. Can Geotech J 18(1):67–85

    Google Scholar 

  54. 54.

    Roy M, Tremblay M, Tavenas F, Rochelle PL (1982) Development of pore pressures in quasi-static penetration tests in sensitive clay. Can Geotech J 19(2):124–138

    Google Scholar 

  55. 55.

    Saldivar EE, Jardine RJ (2005) Application of an effective stress design method to concrete piles driven in Mexico City clay. Can Geotech J 42(6):1495–1508

    Google Scholar 

  56. 56.

    Samson L, Authier J (1986) Change in pile capacity with time: case histories. Can Geotech J 23(2):174–180

    Google Scholar 

  57. 57.

    Schneider JA, Xu X, Lehane B (2008) Database assessment of CPT-based design methods for axial capacity of driven piles in siliceous sands. J Geotech Geoenviron Eng 134(9):1227–1244

    Google Scholar 

  58. 58.

    Skov R, Denver H (1988) Time dependence of bearing capacity of piles. In: Fellenius BH (ed) Proceedings of 3rd international conference on the application of stress-wave theory to piles. BiTech, Ottawa, pp 879–888

  59. 59.

    Sully JP, Robertson PK, Campanella RG, Woeller DJ (1999) An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils. Can Geotech J 36(2):369–381

    Google Scholar 

  60. 60.

    Sun DA, Matsuoka H, Yao YP, Ishii H (2004) An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis. Comput Geotech 31(1):37–46

    Google Scholar 

  61. 61.

    Suzuki Y, Lehane BM (2015) Analysis of CPT end resistance at variable penetration rates using the spherical cavity expansion method in normally consolidated soils. Comput Geotech 69:141–152

    Google Scholar 

  62. 62.

    Teh CI, Houlsby GT (1991) Analytical study of the cone penetration test in clay. Géotechnique 41(1):17–34

    Google Scholar 

  63. 63.

    Torstensson BA (1977) The pore pressure probe. Geoteknikkdagen, Oslo, Paper 34, pp 34.1–34.15

  64. 64.

    Vardanega PJ, Williamson MG, Bolton MD (2012) Bored pile design in stiff clay II: mechanisms and uncertainty. Proc Inst Civ Eng Geotech Eng 165(4):233–246

    Google Scholar 

  65. 65.

    Wang ZJ, Xie XY, Wang JC (2012) A new nonlinear method for vertical settlement prediction of a single pile and pile groups in layered soils. Comput Geotech 45:118–126

    Google Scholar 

  66. 66.

    Wardle IF, Price G, Freeman J (1992) Effect of time and maintained load on the ultimate capacity of pile in stiff clay. Piling: European Practice and Worldwide Trends: Proceedings of the Conference Organized by the ICE, London, pp 92–99

  67. 67.

    Wheeler SJ, Naatanen A, Karstunen M, Lojander M (2003) An anisotropic elastoplastic model for soft clays. Can Geotech J 40(2):403–418

    Google Scholar 

  68. 68.

    Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  69. 69.

    Xu X, Schneider JA, Lehane B (2008) Cone penetration test (CPT) methods for end-bearing assessment of open- and closed-ended driven piles in siliceous sand. Can Geotech J 45(8):1130–1141

    Google Scholar 

  70. 70.

    Ye WM, Huang Y, Tang YQ, Lu PJ (2000) Time-effect of bearing capacity of driven pile in saturated soil. Rock Soil Mech 21(4):367–369

    Google Scholar 

  71. 71.

    Yu HS (2000) Cavity expansion methods in geomechanics. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  72. 72.

    Zhang LY, Chen JJ (2012) Effect of spatial correlation of SPT data on bearing capacity of driven piles in sand. Can Geotech J 49(4):394–402

    Google Scholar 

  73. 73.

    Zhang QQ, Zhang ZM (2012) A simplified nonlinear approach for single pile settlement analysis. Can Geotech J 49(11):1256–1266

    Google Scholar 

  74. 74.

    Zheng JJ, Lu YE, Yin JH, Guo J (2010) Radial consolidation with variable compressibility and permeability following pile installation. Comput Geotech 37(3):408–412

    Google Scholar 

  75. 75.

    Zhu H, Chang MF (2002) Load transfer curves along bored piles considering modulus degradation. J Geotech Geoenviron Eng 128:764–774

    Google Scholar 

Download references


The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Grant No. 41772290) for this research work.

Author information



Corresponding author

Correspondence to Jingpei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, J., Sun, D. et al. A feasible approach to predicting time-dependent bearing performance of jacked piles from CPTu measurements. Acta Geotech. 15, 1935–1952 (2020). https://doi.org/10.1007/s11440-019-00875-x

Download citation


  • Centrifuge model test
  • Corrected cone resistance
  • CPTu measurements
  • Load carrying behaviours
  • Time-dependent