Skip to main content

Advertisement

Log in

A simplified design method for energy piles

  • Short Communication
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper introduces a simplified method to investigate the influence of thermal loads on the shaft friction and tip resistance of energy piles. The method is based on the influence factors (λ and η) which are back-calculated drawing on a large number of field and model tests. Values for λ and η during heating and cooling are suggested. Moreover, a new equation is proposed to calculate total shaft friction. The equations concerning the relationship between η and temperature difference are recommended to investigate the impacts of the thermal load on the pile tip resistance. The slope of the linear equation of an end-bearing pile is 2.14 times that of a floating pile indicating that the pile tip resistance of an end-bearing pile is much more affected by the same thermal load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akrouch GA, Sánchez M, Briaud JL (2014) Thermo-mechanical behavior of energy piles in high plasticity clays. Acta Geotech 9(3):399–412

    Article  Google Scholar 

  2. Amatya BL, Soga K, Bourne-Webb PJ, Amis T, Laloui L (2012) Thermo-mechanical behaviour of energy piles. Géotechnique 62(6):503–519

    Article  Google Scholar 

  3. Bouazza A, Singh RM, Wang B, Barry-Macaulay D, Haberfield C, Chapman G, Baycan S, Carden Y (2011) Harnessing onsite renewable energy through pile foundations. Aust Geomech 46(4):79–90

    Google Scholar 

  4. Bourne-Webb PJ, Amatya B, Soga K, Amis T, Davidson C (2009) Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3):237–248

    Article  Google Scholar 

  5. Bourne-Webb PJ, Pereira JM, Bowers GA, Mimouni T, Loveridge FA, Burlon S, Sutman M (2014) Design tools for thermoactive geotechnical systems. DFI J 8(2):121–129

    Google Scholar 

  6. Brandl H (2006) Energy foundations and other thermo-active ground structures. Geotechnique 56(2):81–122

    Article  Google Scholar 

  7. Burlon S, Habert J, Szymkievicz F, Suryatriyastuti M, Mroueh H (2013) Towards a design approach of bearing capacity of thermo-active piles. In: European geothermal congress, pp 1–6

  8. Faizal M, Bouazza A, Singh RM (2016) An experimental investigation of the influence of intermittent and continuous operating modes on the thermal behaviour of a full scale geothermal energy pile. Geomech Energy Environ 8:8–29

    Article  Google Scholar 

  9. Faizal M, Bouazza A, Haberfield C, McCartney JS (2018) Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes. J Geotech Geoenviron Eng 144(10):04018072

    Article  Google Scholar 

  10. Goode J III, McCartney JS (2015) Centrifuge modeling of boundary restraint effects in energy foundations. J Geotech Geoenviron Eng 141(8):04015034

    Article  Google Scholar 

  11. Kalantidou A, Tang AM, Pereira J, Hassen G (2012) Preliminary study on the mechanical behaviour of heat exchanger pile in physical model. Géotechnique 62(11):1047–1051

    Article  Google Scholar 

  12. Knellwolf C, Peron H, Laloui L (2011) Geotechnical analysis of heat exchanger piles. J Geotech Geoenviron Eng 137(10):890–902

    Article  Google Scholar 

  13. Kong GQ, Wu D, Liu HL, Laloui L, Cheng XH, Zhu X (2019) Performance of a geothermal energy deicing system for bridge deck using a pile heat exchanger. Int J Energy Res 43(1):596–603

    Article  Google Scholar 

  14. Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Meth Geomech 30(8):763–781

    Article  Google Scholar 

  15. Liu HL, Wang CL, Kong GQ, Ng CWW (2018) Model tests on thermo-mechanical behavior of an improved energy pile. Eur J Environ Civ Eng 22(10):1257–1272

    Article  Google Scholar 

  16. Liu HL, Wang CL, Kong GQ, Bouazza A (2019) Ultimate bearing capacity of energy piles in dry and saturated sand. Acta Geotech 14(3):869–879

    Article  Google Scholar 

  17. Lu HW, Jiang G, Wang H, Hong X, Shi CL, Gong HW, Liu WQ (2017) In situ tests and analysis of mechanical-thermo bearing characteristic of drilled friction geothermal energy pile. Chin J Geotech Eng 39(2):334–342

    Google Scholar 

  18. McCartney JS, Murphy KD (2012) Strain distributions in full-scale energy foundation. DFI J 6(2):26–38

    Google Scholar 

  19. Mimouni T, Laloui L (2014) Towards a secure basis for the design of geothermal piles. Acta Geotech 9(3):355–366

    Article  Google Scholar 

  20. Murphy KD, McCartney JS, Henry KS (2015) Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotech 10(2):1–17

    Article  Google Scholar 

  21. Murphy KD, McCartney JS (2015) Seasonal response of energy foundations during building operation. Geotech Geol Eng 33(2):343–356

    Article  Google Scholar 

  22. Ng CWW, Shi C, Gunawan A, Laloui L (2014) Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay. Géotech Lett 4(3):310–316

    Article  Google Scholar 

  23. Ng CWW, Shi C, Gunawan A, Laloui L, Liu HL (2015) Centrifuge modelling of heating effects on energy pile performance in saturated sand. Can Geotech J 52(8):1045–1057

    Article  Google Scholar 

  24. Nguyen VT, Tang AM, Pereira JM (2017) Long-term thermo-mechanical behavior of energy pile in dry sand. Acta Geotech 12(4):729–737

    Article  Google Scholar 

  25. Olgun CG, McCartney JS, Loveridge FA, Bowers GA, Coccia CJ, Bouazza A et al (2014) Building codes, green certification and implementation issues, market challenges. DFI J 8(2):84–92

    Google Scholar 

  26. Rotta Loria AF, Gunawan A, Shi C, Laloui L, Ng CWW (2015) Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads. Geomech Energy Environ 1(1):1–15

    Article  Google Scholar 

  27. Salciarini D, Ronchi F, Tamagnini C (2017) Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: a parametric study. Acta Geotech 12(4):703–728

    Article  Google Scholar 

  28. Stewart MA, McCartney JS (2013) Centrifuge modeling of soil–structure interaction in energy foundations. J Geotech Geoenviron Eng 140(4):04013044

    Article  Google Scholar 

  29. Sutman M, Olgun C, Brettmann T (2015) Full-scale field testing of energy piles. In: Iskander M, Suleiman MT, Anderson JB, Laefer DF (eds) Proceedings of IFCEE 2015, San Antonio, TX, USA, vol 1. American Society of Civil Engineers (ASCE), Reston, pp 1638–1647

    Chapter  Google Scholar 

  30. Wang B, Bouazza A, Haberfield C (2011) Preliminary observations from laboratory scale model geothermal pile subjected to thermo-mechanical loading. In: Han J, Alzamora DE (eds) Proceedings of Geo-Frontiers 2011: Advances in Geotechnical Engineering. ASCE, Reston, pp 430–439

    Chapter  Google Scholar 

  31. Wang B, Bouazza A, Singh RM, Haberfield C, Barry-Macaulay D, Baycan S (2015) Posttemperature effects on shaft capacity of a full-scale geothermal energy pile. J Geotech Geoenviron Eng 141(4):04014125

    Article  Google Scholar 

  32. Wang CL, Liu HL, Kong GQ, Ng CWW (2016) Model tests of energy piles with and without a vertical load. Environ Geotech 3(4):203–213

    Article  Google Scholar 

  33. Wang CL, Liu HL, Kong GQ, Ng CWW (2017) Different types of energy piles with heating–cooling cycles. Proc Inst Civ Eng Geotech Eng 170(3):220–231

    Article  Google Scholar 

  34. Wu D, Liu HL, Kong GQ, Li C (2018) Thermo-mechanical behavior of energy pile under different climatic conditions. Acta Geotech. https://doi.org/10.1007/s11440-018-0731-9

    Article  Google Scholar 

  35. Yavari N, Tang AM, Pereira J, Hassen G (2014) Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling. Acta Geotech 9(3):385–398

    Article  Google Scholar 

  36. You S, Cheng XH, Guo HX (2016) Experimental study on structural response of CFG energy piles. Appl Therm Eng 96(1):640–651

    Article  Google Scholar 

  37. Zhou H, Kong GQ, Liu HL, Laloui L (2018) Similarity solution for cavity expansion in thermoplastic soil. Int J Numer Anal Meth Geomech 42(2):274–294

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding from the National Natural Science Foundation of China (Grant No. 51778212) and the National Natural Science Foundation of China (Grant No. 51622803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-long Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Hl., Wang, Cl., Kong, Gq. et al. A simplified design method for energy piles. Acta Geotech. 14, 1605–1613 (2019). https://doi.org/10.1007/s11440-019-00849-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00849-z

Keywords

Navigation