Advertisement

Spatiotemporal analysis of strain localization in dense granular materials

  • Gang Ma
  • Richard A. Regueiro
  • Wei Zhou
  • Jiaying Liu
Research Paper
  • 170 Downloads

Abstract

Predicting localized failure in granular materials is a problem of great interest from both the scientific and technological perspectives. The initiation and growth of strain localization have been studied using laboratory experiments and particle-based numerical simulations, and their findings have been preliminarily implemented into continuum constitutive models. In this study, we revisit strain localization in granular materials using the spatiotemporal data analysis technique, which has been extensively employed in data mining science and social science for the sake of different applications. A dense packing of granular material subjected to biaxial compression was simulated using the combined finite and discrete element method. The large amount of particle-level kinematical data, including the translational and rotational particle motion, fluctuating velocity, granular temperature, and local strain, are collected for subsequent spatiotemporal data analysis. The spatiotemporal data analysis provides a new perspective on the strain localization in dense granular materials and a rich body of new insights are presented for the first time. The spatial autocorrelation analysis results in Moran’s I values close to 1, and positive Z scores and statistically significant p values, which indicate that a dense granular system features clustered patterns during shearing. This finding proves yet again that dense granular materials have an inherent short range order. Eventually, correspondence between localized modes with different particle kinematics and spatial distributions of local Moran statistics and quadrant location map are investigated. By assuming shearing of dense granular materials is a first-order Markov chain process, the convergence and time homogeneity of this process are analyzed. Both the maximum likelihood and Pearson test statistics clearly demonstrate that shearing of dense granular materials is a time-homogenous Markov chain process.

Keywords

Granular materials Markov chain Moran’s I Spatiotemporal data analysis Strain localization 

Notes

Acknowledgements

The authors thank the anonymous reviewers for their careful review and constructive comments, which significantly improved the manuscript. This work has been supported by National Key R&D Program of China (Grant No. 2017YFC0404801), National Science Foundation of China under Grant No. 51509190, and China Postdoctoral Science Foundation (No. 2016T907272).

References

  1. 1.
    Alonso-Marroquín F, Herrmann HJ (2005) The incremental response of soils. An investigation using a discrete-element model. J Eng Math 52:11–34.  https://doi.org/10.1007/s10665-004-6675-0 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alshibli KA, Hasan A (2008) Spatial variation of void ratio and shear band thickness in sand using X-ray computed tomography. Géotechnique 58:249–257.  https://doi.org/10.1680/geot.2008.58.4.249 CrossRefGoogle Scholar
  3. 3.
    Andò E, Hall SA, Viggiani G, Desrues J, Bésuelle P (2012) Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech 7:1–13.  https://doi.org/10.1007/s11440-011-0151-6 CrossRefGoogle Scholar
  4. 4.
    Anselin L (1995) Local indicators of spatial association-LISA. Geogr Anal 27:93–115.  https://doi.org/10.1111/j.1538-4632.1995.tb00338.x CrossRefGoogle Scholar
  5. 5.
    Bandi MM, Rivera MK, Krzakala F, Ecke RE (2013) Fragility and hysteretic creep in frictional granular jamming. Phys Rev E Stat Nonlinear Soft Matter Phys 87:1–14.  https://doi.org/10.1103/PhysRevE.87.042205 CrossRefGoogle Scholar
  6. 6.
    Bi D, Zhang J, Chakraborty B, Behringer RP (2011) Jamming by shear. Nature 480:355–358.  https://doi.org/10.1038/nature10667 CrossRefGoogle Scholar
  7. 7.
    Bickenbach F, Bode E (2003) Evaluating the Markov property in studies of economic convergence. Int Reg Sci Rev 26:363–392.  https://doi.org/10.1177/0160017603253789 CrossRefGoogle Scholar
  8. 8.
    Borja RI, Andrade JE (2006) Critical state plasticity. Part VI: meso-scale finite element simulation of strain localization in discrete granular materials. Comput Methods Appl Mech Eng 195:5115–5140.  https://doi.org/10.1016/j.cma.2005.08.020 CrossRefzbMATHGoogle Scholar
  9. 9.
    Borja RI, Song X, Rechenmacher AL, Abedi S, Wu W (2013) Shear band in sand with spatially varying density. J Mech Phys Solids 61:219–234.  https://doi.org/10.1016/j.jmps.2012.07.008 CrossRefGoogle Scholar
  10. 10.
    Campbell CS (2006) Granular material flows—an overview. Powder Technol 162:208–229.  https://doi.org/10.1016/j.powtec.2005.12.008 CrossRefGoogle Scholar
  11. 11.
    Cheung G, O’Sullivan C (2008) Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations. Particuology 6:483–500.  https://doi.org/10.1016/j.partic.2008.07.018 CrossRefGoogle Scholar
  12. 12.
    Cundall PA (1988) Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25:107–116.  https://doi.org/10.1016/0148-9062(88)92293-0 CrossRefGoogle Scholar
  13. 13.
    Desrues J, Viggiani G (2004) Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int J Numer Anal Methods Geomech 28:279–321.  https://doi.org/10.1002/nag.338 CrossRefGoogle Scholar
  14. 14.
    Fazekas S, Török J, Kertész J, Wolf DE (2006) Morphologies of three-dimensional shear bands in granular media. Phys Rev E Stat Nonlinear Soft Matter Phys 74:1–6.  https://doi.org/10.1103/PhysRevE.74.031303 CrossRefGoogle Scholar
  15. 15.
    Frenning G (2008) An efficient finite/discrete element procedure for simulating compression of 3D particle assemblies. Comput Methods Appl Mech Eng 197:4266–4272.  https://doi.org/10.1016/j.cma.2008.05.002 CrossRefzbMATHGoogle Scholar
  16. 16.
    Fu P, Dafalias YF (2012) Quantification of large and localized deformation in granular materials. Int J Solids Struct 49:1741–1752.  https://doi.org/10.1016/j.ijsolstr.2012.03.006 CrossRefGoogle Scholar
  17. 17.
    Fu YR, Wang LB (2007) Quantification and simulation of particle kinematics and local strains in granular materials using X-ray tomography imaging and discrete element method. J Eng Mech 134:143–154.  https://doi.org/10.1061/(ASCE)0733-9399(2008)134:2(143) CrossRefGoogle Scholar
  18. 18.
    Gethin DT, Yang XS, Lewis RW (2006) A two dimensional combined discrete and finite element scheme for simulating the flow and compaction of systems comprising irregular particulates. Comput Methods Appl Mech Eng 195:5552–5565.  https://doi.org/10.1016/j.cma.2005.10.025 CrossRefzbMATHGoogle Scholar
  19. 19.
    Guo N, Zhao J (2014) A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng 99:789–818.  https://doi.org/10.1002/nme.4702 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hall SA, Muir Wood D, Ibraim E, Viggiani G (2010) Localised deformation patterning in 2D granular materials revealed by digital image correlation. Granul Matter 12:1–14.  https://doi.org/10.1007/s10035-009-0155-1 CrossRefGoogle Scholar
  21. 21.
    Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G et al (2010) Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 60:315–322.  https://doi.org/10.1680/geot.2010.60.5.315 CrossRefGoogle Scholar
  22. 22.
    Hart R, Cundall PA, Lemos J (1988) Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25:117–125.  https://doi.org/10.1016/0148-9062(88)92294-2 CrossRefGoogle Scholar
  23. 23.
    Higo Y, Oka F, Sato T, Matsushima Y, Kimoto S (2013) Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus X-ray CT with digital image correlation. Soils Found 53:181–198.  https://doi.org/10.1016/j.sandf.2013.02.001 CrossRefGoogle Scholar
  24. 24.
    Hurley RC, Hall SA, Andrade JE, Wright J (2016) Quantifying interparticle forces and heterogeneity in 3D granular materials. Phys Rev Lett 117:1–5.  https://doi.org/10.1103/PhysRevLett.117.098005 CrossRefGoogle Scholar
  25. 25.
    Iwashita K, Oda M (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109:192–205.  https://doi.org/10.1016/S0032-5910(99)00236-3 CrossRefGoogle Scholar
  26. 26.
    Kuhn MR (1999) Structured deformation in granular materials. Mech Mater 31:407–429.  https://doi.org/10.1016/S0167-6636(99)00010-1 CrossRefGoogle Scholar
  27. 27.
    Lopera Perez JC, Kwok CY, O’Sullivan C, Huang X, Hanley KJ (2016) Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework. Soils Found 56:152–159.  https://doi.org/10.1016/j.sandf.2016.01.013 CrossRefGoogle Scholar
  28. 28.
    Ma G, Zhou W, Chang X, Yuan W (2014) Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles. Int J Geomech 14:4014014.  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000372 CrossRefGoogle Scholar
  29. 29.
    Ma G, Zhou W, Chang XL (2014) Modeling the particle breakage of rockfill materials with the cohesive crack model. Comput Geotech 61:1143–1320.  https://doi.org/10.1016/j.compgeo.2014.05.006 CrossRefGoogle Scholar
  30. 30.
    Ma G, Zhou W, Ng TT, Cheng YG, Chang XL (2015) Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model. Acta Geotech 10:481–496.  https://doi.org/10.1007/s11440-015-0367-y CrossRefGoogle Scholar
  31. 31.
    Ma G, Zhou W, Chang X, Ng T-T, Yang L (2016) Formation of shear bands in crushable and irregularly shaped granular materials and the associated microstructural evolution. Powder Technol 301:118–130.  https://doi.org/10.1016/j.powtec.2016.05.068 CrossRefGoogle Scholar
  32. 32.
    Ma G, Zhou W, Chang X-L, Chen M-X (2016) A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granul Matter 18:7.  https://doi.org/10.1007/s10035-016-0615-3 CrossRefGoogle Scholar
  33. 33.
    Ma G, Zhou W, Regueiro RA, Wang Q, Chang X (2017) Modeling the fragmentation of rock grains using computed tomography and combined FDEM. Powder Technol 308:388–397.  https://doi.org/10.1016/j.powtec.2016.11.046 CrossRefGoogle Scholar
  34. 34.
    Ma G, Regueiro RA, Zhou W et al (2018) Role of particle crushing on particle kinematics and shear banding in granular materials. Acta Geotech.  https://doi.org/10.1007/s11440-017-0621-6 Google Scholar
  35. 35.
    Mahmood Z, Iwashita K (2009) Influence of inherent anisotropy on mechanical behavior of granular materials based on DEM simulations. Int J Numer Anal Methods Geomech.  https://doi.org/10.1002/nag.830 zbMATHGoogle Scholar
  36. 36.
    Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17.  https://doi.org/10.2307/2332142 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Munjiza A (2004) The combined finite-discrete element method. Wiley, Chichester.  https://doi.org/10.1002/0470020180 CrossRefzbMATHGoogle Scholar
  38. 38.
    Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12:145–174.  https://doi.org/10.1108/02644409510799532 CrossRefzbMATHGoogle Scholar
  39. 39.
    O’Sullivan C, Bray JD, Li S (2003) A new approach for calculating strain for particulate media. Int J Numer Anal Methods Geomech 27:859–877.  https://doi.org/10.1002/nag.304 CrossRefzbMATHGoogle Scholar
  40. 40.
    Peña AA, García-Rojo R, Herrmann HJ (2007) Influence of particle shape on sheared dense granular media. Granul Matter 9:279–291.  https://doi.org/10.1007/s10035-007-0038-2 CrossRefzbMATHGoogle Scholar
  41. 41.
    Peters JF, Walizer LE (2013) Patterned nonaffine motion in granular media. J Eng Mech 139:1479–1490.  https://doi.org/10.1061/(ASCE)EM.1943-7889.0000556 CrossRefGoogle Scholar
  42. 42.
    Radjai F, Roux S (2002) Turbulentlike fluctuations in quasistatic flow of granular media. Phys Rev Lett 89:064302/1–064302/4.  https://doi.org/10.1103/PhysRevLett.89.064302 CrossRefGoogle Scholar
  43. 43.
    Rechenmacher AL (2006) Grain-scale processes governing shear band initiation and evolution in sands. J Mech Phys Solids 54:22–45.  https://doi.org/10.1016/j.jmps.2005.08.009 CrossRefzbMATHGoogle Scholar
  44. 44.
    Rechenmacher A, Abedi S, Chupin O (2010) Evolution of force chains in shear bands in sands. Géotechnique 60:343–351.  https://doi.org/10.1680/geot.2010.60.5.343 CrossRefGoogle Scholar
  45. 45.
    Rechenmacher AL, Abedi S, Chupin O, Orlando AD (2011) Characterization of mesoscale instabilities in localized granular shear using digital image correlation. Acta Geotech 6:205–217.  https://doi.org/10.1007/s11440-011-0147-2 CrossRefGoogle Scholar
  46. 46.
    Rey SJ (2001) Spatial empirics for economic growth and convergence. Geogr Anal 33:195–214.  https://doi.org/10.1111/j.1538-4632.2001.tb00444.x CrossRefGoogle Scholar
  47. 47.
    Rey SJ (2009) Show me the code: spatial analysis and open source. J Geogr Syst 11:191–207.  https://doi.org/10.1007/s10109-009-0086-8 CrossRefGoogle Scholar
  48. 48.
    Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23:371–394.  https://doi.org/10.1016/0022-5096(75)90001-0 CrossRefGoogle Scholar
  49. 49.
    Semnani SJ, Borja RI (2017) Quantifying the heterogeneity of shale through statistical combination of imaging across scales. Acta Geotech 12:1193–1205.  https://doi.org/10.1007/s11440-017-0576-7 CrossRefGoogle Scholar
  50. 50.
    Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Methods Geomech 40:2423–2449.  https://doi.org/10.1002/nag.2536 CrossRefGoogle Scholar
  51. 51.
    Shorrocks AF (1978) The measurement of mobility. Econometrica 46:1013.  https://doi.org/10.2307/1911433 CrossRefzbMATHGoogle Scholar
  52. 52.
    Sun Q, Jin F, Wang G, Song S, Zhang G (2015) On granular elasticity. Sci Rep 5:9652.  https://doi.org/10.1038/srep09652 CrossRefGoogle Scholar
  53. 53.
    Thornton C (2010) Quasi-static simulations of compact polydisperse particle systems. Particuology 8:119–126.  https://doi.org/10.1016/j.partic.2009.07.007 CrossRefGoogle Scholar
  54. 54.
    Thornton C, Zhang L (2006) A numerical examination of shear banding and simple shear non-coaxial flow rules. Philos Mag 86:3425–3452.  https://doi.org/10.1080/14786430500197868 CrossRefGoogle Scholar
  55. 55.
    Tordesillas A, Peters JF, Gardiner BS (2004) Shear band evolution and accumulated microstructural development in Cosserat media. Int J Numer Anal Methods Geomech 28:981–1010.  https://doi.org/10.1002/nag.343 CrossRefzbMATHGoogle Scholar
  56. 56.
    Tordesillas A, Muthuswamy M, Walsh SD (2008) Mesoscale measures of nonaffine deformation in dense granular assemblies. J Eng Mech 134:1095–1113.  https://doi.org/10.1061/(ASCE)0733-9399(2008)134:12(1095) CrossRefGoogle Scholar
  57. 57.
    Tordesillas A, Pucilowski S, Walker DM, Peters JF, Walizer LE (2014) Micromechanics of vortices in granular media: connection to shear bands and implications for continuum modelling of failure in geomaterials. Int J Numer Anal Methods Geomech 38:1247–1275.  https://doi.org/10.1002/nag.2258 CrossRefGoogle Scholar
  58. 58.
    Tordesillas A, Pucilowski S, Lin Q, Peters JF, Behringer RP (2016) Granular vortices: identification, characterization and conditions for the localization of deformation. J Mech Phys Solids 90:215–241.  https://doi.org/10.1016/j.jmps.2016.02.032 MathSciNetCrossRefGoogle Scholar
  59. 59.
    Tordesillas A, Walker DM, Andò E, Viggiani G (2016) Revisiting localized deformation in sand with complex systems subject areas: author for correspondence. Proc R Soc A 439:1–20.  https://doi.org/10.1098/rspa.2012.0606 Google Scholar
  60. 60.
    Walker DM, Tordesillas A (2010) Topological evolution in dense granular materials: a complex networks perspective. Int J Solids Struct 47:624–639.  https://doi.org/10.1016/j.ijsolstr.2009.10.025 CrossRefzbMATHGoogle Scholar
  61. 61.
    Walker DM, Tordesillas A, Kuhn MR (2017) Spatial connectivity of force chains in a simple shear 3D simulation exhibiting shear bands. J Eng Mech 143:C4016009.  https://doi.org/10.1061/(ASCE)EM.1943-7889.0001092 CrossRefGoogle Scholar
  62. 62.
    Wang J, Dove JE, Gutierrez MS (2007) Discrete-continuum analysis of shear banding in the direct shear test. Géotechnique 57:513–526.  https://doi.org/10.1680/geot.2007.57.6.513 CrossRefGoogle Scholar
  63. 63.
    Williams JR, Rege N (1997) The development of circulation cell structures in granular materials undergoing compression. Powder Technol 90:187–194.  https://doi.org/10.1016/S0032-5910(96)03201-9 CrossRefGoogle Scholar
  64. 64.
    Zhou W, Yang L, Ma G, Xu K, Lai Z, Chang X (2017) DEM modeling of shear bands in crushable and irregularly shaped granular materials. Granul Matter 19:1–12.  https://doi.org/10.1007/s10035-017-0712-y CrossRefGoogle Scholar
  65. 65.
    Zhu H, Nicot F, Darve F (2016) Meso-structure evolution in a 2D granular material during biaxial loading. Granul Matter.  https://doi.org/10.1007/s10035-016-0608-2 Google Scholar
  66. 66.
    Zhu H, Nguyen HNG, Nicot F, Darve F (2016) On a common critical state in localized and diffuse failure modes. J Mech Phys Solids 95:112–131.  https://doi.org/10.1016/j.jmps.2016.05.026 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanChina
  2. 2.Department of Civil, Environmental, and Architectural EngineeringUniversity of Colorado BoulderBoulderUSA

Personalised recommendations