Skip to main content
Log in

Modeling of chemo-hydromechanical behavior of unsaturated porous media: a nonlocal approach based on integral equations

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Unsaturated clay is a heterogeneous porous medium consisting of three phases, namely solid soil skeleton, pore water, and pore air. It has been well recognized that the variation of the chemical property of pore fluid in clay can affect the hydromechanical behavior of this material remarkably. In this study, we formulate a non-local chemo-hydromechanical model for unsaturated clay via the constitutive correspondence principle in the state-based peridynamics—a reformulation of classical continuum mechanics using integral equations instead of partial differential equations. We numerically implement this non-local constitutive model through the implicit return mapping algorithm at the material particle level and then integrate the material subroutine into a computational peridynamics code. We conduct a series of numerical simulations of unsaturated clay samples under different chemical loading rates. The numerical results demonstrate that the proposed non-local model can capture the dramatic impact of organic chemicals on the mechanical behavior of unsaturated clay. The numerical results also show that the proposed non-local numerical model can simulate localized deformation in chemically active unsaturated clay because of the intrinsic length scale embedded in the integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430

    Article  Google Scholar 

  2. Barbour SL, Fredlund DG (1989) Mechanisms of osmotic flow and volume change in clay soils. Can Geotech J 26(4):551–562

    Article  Google Scholar 

  3. Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  4. Bolt GH (1956) Physico-chemical analysis of the compressibility of pure clays. Géotechnique 6(2):86–93

    Article  Google Scholar 

  5. Bolt G, Miller R (1955) Compression studies of illite suspensions 1. Soil Sci Soc Am J 19(3):285–288

    Article  Google Scholar 

  6. Bolzon G, Schrefler B, Zienkiewicz O (1996) Elastoplastic soil constitutive laws generalized to partially saturated states. Géotechnique 46(2):279–289

    Article  Google Scholar 

  7. Borja RI (2004) Cam-clay plasticity. Part V: a mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Comput Methods Appl Mech Eng 193(48–51):5301–5338

    Article  MathSciNet  MATH  Google Scholar 

  8. Borja RI (2006) On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int J Solids Struct 43(6):1764–1786

    Article  MathSciNet  MATH  Google Scholar 

  9. Borja RI (2013) Plasticity: modeling & computation. Springer Science & Business Media, New York

    Book  MATH  Google Scholar 

  10. Borja RI, Koliji A (2009) On the effective stress in unsaturated porous continua with double porosity. J Mech Phys Solids 57(8):1182–1193

    Article  MATH  Google Scholar 

  11. Borja RI, Song X, Rechenmacher AL, Abedi S, Wu W (2013) Shear band in sand with spatially varying density. J Mech Phys Solids 61(1):219–234

    Article  Google Scholar 

  12. Borja RI, Song X, Wu W (2013) Critical state plasticity. part vii: triggering a shear band in variably saturated porous media. Comput Methods Appl Mech Eng 261:66–82

    Article  MATH  Google Scholar 

  13. Boukpeti N, Charlier R, Hueckel T (2004) Modelling contamination of clays. Elsevier Geo Eng Book Ser 2:523–528

    Article  Google Scholar 

  14. Bunger AP (2010) The mandelcryer effect in chemoporoelasticity. Int J Numer Anal Methods Geomech 34(14):1479–1511

    Article  MATH  Google Scholar 

  15. Cao J, Jung J, Song X, Bate B (2018) On the soil water characteristic curves of poorly graded granular materials in aqueous polymer solutions. Acta Geotech 13(1):103–116

    Article  Google Scholar 

  16. Castellanos E, Villar M, Romero E, Lloret A, Gens A (2008) Chemical impact on the hydro-mechanical behaviour of high-density febex bentonite. Phys Chem Earth Parts A/B/C 33:S516–S526 Clays in Natural & Engineered Barriers for Radioactive Waste Confinement

    Article  Google Scholar 

  17. Chen G, Gallipoli D, Ledesma A (2007) Chemo-hydro-mechanical coupled consolidation for a poroelastic clay buffer in a radioactive waste repository. Transp Porous Media 69:189–213

    Article  Google Scholar 

  18. Cleall P (1998) An investigation of the thermo/hydraulic/mechanical behaviour of unsaturated soils, including expansive soils. Ph.D. thesis, University of Wales Cardiff, UK

  19. DeJong J, Soga K, Kavazanjian E, Burns S, Van Paassen L, Al Qabany A, Aydilek A, Bang S, Burbank M, Caslake LF et al (2013) Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique 63(4):287

    Article  Google Scholar 

  20. Detournay E, Sarout J, Tan C, Caurel J (2005) Chemoporoelastic parameter identification of a reactive shale, vol. 125 of Solid Mechanics and its Applications, pp 125–132

  21. D’Onza F, Gallipoli D, Wheeler S, Casini F, Vaunat J, Khalili N, Laloui L, Mancuso C, Mašín D, Nuth M et al (2011) Benchmark of constitutive models for unsaturated soils. Géotechnique 61(4):283–302

    Article  Google Scholar 

  22. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013) A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math Models Methods Appl Sci 23(03):493–540

    Article  MathSciNet  MATH  Google Scholar 

  23. Fernandez F, Quigley RM (1985) Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons. Can Geotech J 22(2):205–214

    Article  Google Scholar 

  24. Fernandez F, Quigley RM (1988) Viscosity and dielectric constant controls on the hydraulic conductivity of clayey soils permeated with water-soluble organics. Can Geotech J 25(3):582–589

    Article  Google Scholar 

  25. Fernandez F, Quigley RM (1991) Controlling the destructive effects of clay-organic liquid interactions, by application of effective stresses. Can Geotech J 28(3):388–398

    Article  Google Scholar 

  26. Fisher R (1926) On the capillary forces in an ideal soil; correction of formulae given by wb haines. J Agric Sci 16(3):492–505

    Article  Google Scholar 

  27. Flanagan D, Taylor L (1987) An accurate numerical algorithm for stress integration with finite rotations. Comput Methods Appl Mech Eng 62(3):305–320

    Article  MATH  Google Scholar 

  28. Foster JT, Silling SA, Chen WW (2010) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81(10):1242–1258

    MATH  Google Scholar 

  29. Gajo A, Loret B (2003) Finite element simulations of chemo-mechanical coupling in elasticplastic homoionic expansive clays. Comput Methods Appl Mech Eng 192(31):3489–3530

    Article  MATH  Google Scholar 

  30. Gajo A, Loret B, Hueckel T (2002) Electro-chemo-mechanical couplings in saturated porous media: elastic–plastic behaviour of heteroionic expansive clays. Int J Solids Struct 39(16):4327–4362

    Article  MATH  Google Scholar 

  31. Gallipoli D, Gens A, Sharma R, Vaunat J (2003) An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Géotechnique 53(1):123–136

    Article  Google Scholar 

  32. Ganzenmller G, Hiermaier S, May M (2015) On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics. Comput Struct 150:71–78

    Article  Google Scholar 

  33. Gens A (2010) Soil-environment interactions in geotechnical engineering. Géotechnique 60(1):3–74

    Article  Google Scholar 

  34. Guimarães LdN, Gens A, Olivella S (2007) Coupled thermo-hydro-mechanical and chemical analysis of expansive clay subjected to heating and hydration. Transp Porous Media 66(3):341–372

    Article  Google Scholar 

  35. Hueckel T (1997) Chemo-plasticity of clays subjected to stress and flow of a single contaminant. Int J Numer Anal Methods Geomech 21(1):43–72

    Article  MATH  Google Scholar 

  36. Hueckel T (2002) Reactive plasticity for clays during dehydration and rehydration. Part 1: concepts and options. Int J Plast 18(3):281–312

    Article  MATH  Google Scholar 

  37. Kaczmarek M (2001) Chemically induced deformation of a porous layer coupled with advectivedispersive transport. Analytical solutions. Int J Numer Anal Methods Geomech 25(8):757–770

    Article  MATH  Google Scholar 

  38. Kaczmarek M, Hueckel T (1998) Chemo-mechanical consolidation of clays: analytical solutions for a linearized one-dimensional problem. Transp Porous Media 32:49–74

    Article  Google Scholar 

  39. Kenney T (1967) The influence of mineral composition on the residual strength of natural soils. In: Proceedings of the geotechnical conference on shear strength properties of natural soils and rocks, Oslo, Norway, vol 1, pp 123–129

  40. Khalili N, Zargarbashi S (2010) Influence of hydraulic hysteresis on effective stress in unsaturated soils. Geotechnique 60(9):729–734

    Article  Google Scholar 

  41. Khalili N, Geiser F, Blight G (2004) Effective stress in unsaturated soils: review with new evidence. Int J Geomech 4(2):115–126

    Article  Google Scholar 

  42. Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56(4):1566–1577

    Article  MathSciNet  MATH  Google Scholar 

  43. Lei X, Wong H, Fabbri A, Limam A, Cheng Y (2014) A thermo-chemo-electro-mechanical framework of unsaturated expansive clays. Comput Geotech 62:175–192

    Article  Google Scholar 

  44. Lei X, Wong H, Fabbri A, Limam A, Cheng Y (2016) A chemo-elasticplastic model for unsaturated expansive clays. Int J Solids Struct 88–89:354–378

    Article  Google Scholar 

  45. Li Y-C, Cleall PJ, Thomas H (2011) Multi-dimensional chemo-osmotic consolidation of clays. Comput Geotech 38(4):423–429

    Article  Google Scholar 

  46. Liu Z, Boukpeti N, Li X, Collin F, Radu J-P, Hueckel T, Charlier R (2005) Modelling chemo-hydro-mechanical behaviour of unsaturated clays: a feasibility study. Int J Numer Anal Methods Geomech 29(9):919–940

    Article  MATH  Google Scholar 

  47. Loret B, Khalili N (2002) An effective stress elastic–plastic model for unsaturated porous media. Mech Mater 34(2):97–116

    Article  Google Scholar 

  48. Loret B, Hueckel T, Gajo A (2002) Chemo-mechanical coupling in saturated porous media: elasticplastic behaviour of homoionic expansive clays. Int J Solids Struct 39(10):2773–2806

    Article  MATH  Google Scholar 

  49. Lu N, Godt JW, Wu DT (2010) A closed-form equation for effective stress in unsaturated soil. Water Resour Res 46(5):1–14

    Article  Google Scholar 

  50. Lu N, Khalili N, Nikooee E, Hassanizadeh SM (2014) Principle of effective stress in variably saturated porous media. Vadose Zone J 13(5):1–4

    Google Scholar 

  51. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178

    Article  MathSciNet  Google Scholar 

  52. Madsen FT, Mitchell JK (1989) Chemical effects on clay farbric and hydraulic conductivity. Springer, Berlin, Heidelberg, pp 201–251

    Google Scholar 

  53. Maio CD (1996) Exposure of bentonite to salt solution: osmotic and mechanical effects. Géotechnique 46(4):695–707

    Article  Google Scholar 

  54. Mesri G, Olson R (1971) Mechanisms controlling the permeability of clays. Clays Clay Miner 19:151–158

    Article  Google Scholar 

  55. Michaels AS, Lin C (1954) Permeability of kaolinite. Ind Eng Chem 46(6):1239–1246

    Article  Google Scholar 

  56. Mitchell JK, Witherspoon PA, Greenberg JA. Chemico-osmotic effects in fine-grained soils. J Soil Mech Found Div Am Soc Civ Eng (United States) 99:SM4, 04 1973

  57. Mitchell J K, Soga K et al (2005) Fundamentals of soil behavior, vol 3. Wiley, New York

    Google Scholar 

  58. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30(1):543–574

    Article  Google Scholar 

  59. Moyne C, Murad MA (2002) Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int J Solids Struct 39(25):6159–6190

    Article  MATH  Google Scholar 

  60. Nalbantoglu Z, Tuncer ER (2001) Compressibility and hydraulic conductivity of a chemically treated expansive clay. Can Geotech J 38(1):154–160

    Google Scholar 

  61. Nova R, Castellanza R, Tamagnini C (2003) A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. Int J Numer Anal Methods Geomech 27(9):705–732

    Article  MATH  Google Scholar 

  62. Nuth M, Laloui L (2008) Effective stress concept in unsaturated soils: clarification and validation of a unified framework. Int J Numer Anal Methods Geomech 32(7):771–801

    Article  MATH  Google Scholar 

  63. O’ Donnell S T, Rittmann B E, Kavazanjian E Jr (2017) Midp: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation. J Geotech Geoenviron Eng 143(12):04017094

    Article  Google Scholar 

  64. O’ Donnell S T, Kavazanjian E Jr, Rittmann B E (2017) Midp: Liquefaction mitigation via microbial denitrification as a two-stage process. II: Micp. J Geotech Geoenviron Eng 143(12):04017095

    Article  Google Scholar 

  65. Ouchi H, Katiyar A, York J, Foster JT, Sharma MM (2015) A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach. Comput Mech 55(3):561–576

    Article  MathSciNet  MATH  Google Scholar 

  66. Peters GP, Smith DW (2004) The influence of advective transport on coupled chemical and mechanical consolidation of clays. Mech Mater 36(5):467–486 Coupled Chemo-Mechanical Phenomena

    Article  Google Scholar 

  67. Quigley RM, Fernandez F, Yanful E, Helgason T, Margaritis A, Whitby J (1987) Hydraulic conductivity of contaminated natural clay directly below a domestic landfill. Can Geotech J 24(3):377–383

    Article  Google Scholar 

  68. Sarout J, Detournay E (2011) Chemoporoelastic analysis and experimental validation of the pore pressure transmission test for reactive shales. Int J Rock Mech Min Sci 48(5):759–772

    Article  Google Scholar 

  69. Seetharam S, Thomas H, Cleall PJ (2007) Coupled thermo/hydro/chemical/mechanical model for unsaturated soilsnumerical algorithm. Int J Numer Methods Eng 70(12):1480–1511

    Article  MATH  Google Scholar 

  70. Sherwood J (1993) Biot poroelasticity of a chemically active shale. Proc R Soc Lond A Math Phys Eng Sci 440(1909):365–377

    Article  MATH  Google Scholar 

  71. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  MATH  Google Scholar 

  72. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535

    Article  Google Scholar 

  73. Silling SA, Lehoucq R (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168

    Article  Google Scholar 

  74. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  MATH  Google Scholar 

  75. Simo J, Hughes T (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  76. Song X (2014) Strain localization in unsaturated porous media. Ph.D. thesis. Stanford University

  77. Song X (2017) Transient bifurcation condition of partially saturated porous media at finite strain. Int J Numer Anal Methods Geomech 41(1):135–156

    Article  MathSciNet  Google Scholar 

  78. Song X, Borja RI (2014) Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone J 13(5):1–11

    Google Scholar 

  79. Song X, Borja RI (2014) Mathematical framework for unsaturated flow in the finite deformation range. Int J Numer Methods Eng 97(9):658–682

    Article  MathSciNet  MATH  Google Scholar 

  80. Song X, Wang K, Ye M (2018) Localized failure in unsaturated soils under non-isothermal conditions. Acta Geotech 13(1):73–85

    Article  Google Scholar 

  81. Song X, Idinger G, Borja RI, Wu W (2012) Finite element simulation of strain localization in unsaturated soils. In: Unsaturated soils: research and applications. Springer, pp 189–195

  82. Song X, Ye M, Wang K. Strain localization in a solid-water-air system with random heterogeneity via stabilized mixed finite elements. Int J Numer Methods Eng. https://doi.org/10.1002/nme.5590

  83. Sridharan A (1991) Engineering behaviour of fine grained soils: a fundamental approach. Indian Geotehn J

  84. Sridharan A, Rao GV (1973) Mechanisms controlling volume change of saturated clays and the role of the effective stress concept. Géotechnique 23(3):359–382

    Article  Google Scholar 

  85. Taron J, Elsworth D (2009) Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs. Int J Rock Mech Min Sci 46(5):855–864

    Article  Google Scholar 

  86. Taron J, Elsworth D, Min K-B (2009) Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. Int J Rock Mech Min Sci 46(5):842–854

    Article  Google Scholar 

  87. Thomas H, Cleall P (1999) Inclusion of expansive clay behaviour in coupled thermo hydraulic mechanical models. Eng Geol 54(1):93–108

    Article  Google Scholar 

  88. Thomas H, Cleall P (1997) Chemico-osmotic effects on the behaviour of unsaturated expansive clays. In: Geoenvironmental Engineering: Contaminated Ground

  89. Thomas H, Cleall P, Seetharam S (2002) Numerical modelling of the thermal-hydraulic-chemical-mechanical behaviour of unsaturated clay. Environ Geomech Monte Verità, pp 125–136

  90. Ulm F-J, Coussy O (1995) Modeling of thermochemomechanical couplings of concrete at early ages. J Eng Mech 121(7):785–794

    Article  Google Scholar 

  91. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  92. Wheeler S, Sivakumar V (1995) An elasto-plastic critical state framework for unsaturated soil. Géotechnique 45(1):35–53

    Article  Google Scholar 

  93. Witteveen P, Ferrari A, Laloui L (2013) An experimental and constitutive investigation on the chemo-mechanical behaviour of a clay. Geotechnique 63(3):244

    Article  Google Scholar 

  94. Zhang H, Zhou L (2008) Implicit integration of a chemo-plastic constitutive model for partially saturated soils. Int J Numer Anal Methods Geomech 32(14):1715–1735

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the Geotechnical Engineering and Materials Program of the US National Science Foundation (NSF) under contract number CMMI-1659932 to the University of Florida. The support is gratefully acknowledged. Any opinions or positions expressed in this article are those of the authors only and do not reflect any opinions or positions of the NSF. We also thank the anonymous reviewers for their constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Menon, S. Modeling of chemo-hydromechanical behavior of unsaturated porous media: a nonlocal approach based on integral equations. Acta Geotech. 14, 727–747 (2019). https://doi.org/10.1007/s11440-018-0679-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0679-9

Keywords

Navigation