Skip to main content
Log in

Capillary collapse of loose pyroclastic unsaturated sands characterized at grain scale

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The reduction in volume for unsaturated soils wetted at constant total stress is indicated as capillary collapse. Several studies conducted on standard laboratory specimens (macro-scale) outlined the role of initial void ratio, confining pressure and matric suction on collapse onset. Conversely, few observations were made at grain scale, although an important influence of soil structure has been supposed since years. This paper investigated the collapse of coarse and fine sands derived from a pyroclastic soil of Southern Italy. The X-ray computed tomography was used to identify the mechanisms acting at grain scale and to measure the local variations of soil structure. The experimental procedure consisted in preparing remoulded unsaturated specimens and reducing the matric suction until the collapse occurred under self-weight. At different stages of the process, the sample was imaged by X-ray tomography. The experimental results provided original insight into: (1) transformation of soil structure during the wetting tests; (2) variation of porosity, water content and degree of saturation for the whole specimen; and (3) local variations of those variables in several representative sub-volumes. It is worth noting that collapse of coarse sand specimen occurred before saturation. This was also emphasized by the presence of macro-voids at collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alonso EE, Gens A, Josa A (1990) Constitutive model for partially saturated nsoils. Géotechnique 40(3):405–430

    Article  Google Scholar 

  2. Andò E (2013) Experimental study of the evolution of the microstructure of a granular medium under mechanical loading using tomography X-ray. Ph.D. thesis, Laboratory 3SR, Grenoble, France, p 476

  3. Barden L, McGown A, Collins K (1973) The collapse mechanism in partly saturated soil. Eng Geol 7(1):49–60

    Article  Google Scholar 

  4. Bilotta E, Cascini L, Foresta V, Sorbinow G (2005) Geotechnical characterisation of pyroclastic soils involved in huge flowslides. Geotech Geol Eng 23(4):365–402

    Article  Google Scholar 

  5. Bilotta E, Foresta V, Migliaro G (2008) The influence of suction on stiffness, viscosity and collapse of some volcanic ashy soils. In: Proceedings of the 1st European conference of the unsaturated soils, advances in geo-engineering, E-UNSAT 2008, Durham, United Kingdom, 2–4 July 2008. CRC Press, p 349

  6. Bornert M, Vales F, Gharbi H, Nguyen Minh D (2010) Multiscale full-field strain measurements for micromechanical investigations of the hydromechanical behaviour of clayey rocks. Strain 46(1):33–46

    Article  Google Scholar 

  7. Bruchon JF, Pereira JM, Vandamme M, Lenoir N, Delage P, Bornert M (2013) Full 3D investigation and characterisation of capillary collapse of a loose unsaturated sand using X-ray CT. Granul Matter 15(6):783–800

    Article  Google Scholar 

  8. Cascini L, Cuomo S, Guida D (2008) Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy. Eng Geol 96(3):107–125

    Article  Google Scholar 

  9. Cascini L, Cuomo S, Pastor M, Sacco C (2013) Modelling the post-failure stage of rainfall-induced landslides of the flow type. Can Geotech J 50(9):924–934

    Article  Google Scholar 

  10. Cascini L, Cuomo S, Pastor M, Sorbino G (2009) Modeling of rainfall-induced shallow landslides of the flow-type. J Geotech Geoenviron Eng 136(1):85–98

    Article  Google Scholar 

  11. Cuomo S, Moscariello M, Salager S (2016) Grain scale mechanisms for capillary collapse in a loose unsaturated pyroclastic soil. In: Conference proceedings 3rd European conference on unsaturated soils 2016 (E-UNSAT2016), Paris, France, 12–14 Sept 2016. doi: 10.1051/e3sconf/20160906002

  12. Cuomo S, Della Sala M (2013) Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits. Eng Geol 162:118–127

    Article  Google Scholar 

  13. De Gennaro M, Langella A, Colella A, Buonodonno A (2000) Caratterizzazione mineralogica delle vulcanoclastiti del Pizzo d’Alvano. Quad Geol Appl 7(1):49–58

    Google Scholar 

  14. Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3):529–546

    Article  Google Scholar 

  15. Gantzer CJ, Anderson SH (2002) Computed tomographic measurement of macroporosity in chisel-disk and no-tillage seedbeds. Soil Tillage Res 64(1):101–111

    Article  Google Scholar 

  16. Gardner WR (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85(4):228–232

    Article  Google Scholar 

  17. Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 60(5):315–322

    Article  Google Scholar 

  18. Hasan A, Alshibli KA (2010) Experimental assessment of 3D particle-to-particle interaction within sheared sand using synchrotron microtomography. Géotechnique 60(5):369

    Article  Google Scholar 

  19. Hashemi MA, Khaddour G, François B, Massart TJ, Salager S (2014) A tomographic imagery segmentation methodology for three-phase geomaterials based on simultaneous region growing. Acta Geotech 9(5):831–846

    Article  Google Scholar 

  20. Higo Y, Oka F, Morishita R, Matsushima Y, Yoshida T (2014) Trinarization of μX-ray CT images of partially saturated sand at different water-retention states using a region growing method. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 324(1):63–69

    Article  Google Scholar 

  21. Higo Y, Oka F, Sato T, Matsushima Y, Kimoto S (2013) Investigation of localized deformation in partially saturated sand under triaxial compression by microfocus X-ray CT with digital image correlation. Soils Found 53(2):181–198

    Article  Google Scholar 

  22. Iassonov P, Gebrenegus T, Tuller M (2009) Segmentation of X‐ray computed tomography images of porous materials: a crucial step for characterization and quantitative analysis of pore structures. Water Resour Res 45(9):1–12

    Article  Google Scholar 

  23. International Society of Soil Mechanics and Geotechnical Engineering (1998) Recommendations of the ISSMGE for geotechnical laboratory testing: english/deutsch/français. Beuth Verlag

  24. Jennings JEB, Burland JB (1962) Limitations to the use of effective stresses in partly saturated soils. Géotechnique 12(2):125–144

    Article  Google Scholar 

  25. Kato DS, Kawali K (2000) Deformation characteristics of a compacted clay in collapse under isotropic and triaxial stress state. Soils Found 40(5):75–90

    Article  Google Scholar 

  26. Khaddour G (2015) Multi-scale characterisation of the hydro-mechanical behaviour of unsaturated sand: water retention and triaxial response. Ph.D. thesis, Laboratory 3SR, Grenoble, France, p 416

  27. Koliji A (2008) Mechanical behaviour of unsaturated aggregated soils. Doctoral dissertation, École Polytechnique Fédérale de Lausanne

  28. Lancellotta R, Di Prisco C, Costanzo D, Foti S, Sorbino G, Buscarnera G, Cosentini RM, Foresta V (2012) Caratterizzazione e modellazione geotecnica. In: Criteri di zonazione della suscettibilità e della pericolosità da frane innescate da eventi estremi (piogge e sisma). Leonardo Cascini. Composervice srl, Padova, pp 266–319

  29. Lawton EC, Fragaszy RJ, Hardcastle JH (1991) Stress ratio effects on collapse of compacted clayey sand. J Geotech Eng 117(5):714–730

    Article  Google Scholar 

  30. Manzanal D, Pastor M, Merodo JAF (2011) Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part II: unsaturated soil modeling. Int J Numer Anal Meth Geomech 35(18):1899–1917

    Article  Google Scholar 

  31. Moscariello M (2017) Multi-scale laboratory testing and constitutive modelling of unsaturated pyroclastic soils. PhD thesis, University of Salerno, p 233

  32. Moscariello M, Salager S, Cuomo S (2016) X-ray computed tomography for capillary collapse of loose unsaturated sand. Procedia Eng 158:33–38

    Article  Google Scholar 

  33. Pereira JH, Fredlund DG (2000) Volume change behavior of collapsible compacted gneiss soil. J Geotech Geoenviron Eng 126(10):907–916

    Article  Google Scholar 

  34. Perret J, Prasher SO, Kantzas A, Langford C (1999) Three-dimensional quantification of macropore networks in undisturbed soil cores. Soil Sci Soc Am J 63(6):1530–1543

    Article  Google Scholar 

  35. Riedel I (2011) Characterisation and Micro-Scale Analysis of Hostun Sand Water Retention Behaviour. Doctoral dissertation, MA thesis, Université de Grenoble (cit. on p. 216)

  36. Rogers CDF (1995) Types and distribution of collapsible soils. In: Derbyshire E, Dijkstra T, Smalley IJ (eds) Genesis and properties of collapsible soils. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol 468. Springer, Dordrecht, pp 1–17

  37. Rogers CDF, Smalley IJ (1993) The shape of loess particles. Naturwissenschaften 80(10):461–462

    Article  Google Scholar 

  38. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  Google Scholar 

  39. Sorbino G, Nicotera MV (2013) Unsaturated soil mechanics in rainfall-induced flow landslides. Eng Geol 165:105–132

    Article  Google Scholar 

  40. Sorbino G, Ferlisi S, Foresta V (2006) Sulla doppia porosità di alcuni terreni piroclastici della regione Campania. In: Annual meeting of the geotechnical researchers, IARG, Pisa, pp 26–28

  41. Sorbino G, Sica C, Cascini L (2010) Susceptibility analysis of shallow landslides source areas using physically based models. Nat Hazards 53(2):313–332

    Article  Google Scholar 

  42. Sorbino G, Sica C, Cascini L, Cuomo S (2007) On the forecasting of flowslides triggering areas using physically based models. In: Proceedings of 1st North American landslides conference, vol 1, pp 305–315

  43. Sun DA, Sheng D, Xu Y (2007) Collapse behaviour of unsaturated compacted soil with different initial densities. Can Geotech J 44(6):673–686

    Article  Google Scholar 

  44. Terribile F, di Gennaro A, Basile A, Aronne G, Buonanno M, De Mascellis R, Vingiani S (1998) I suoli delle aree di crisi di Quindici e Sarno: proprietae comportamenti in relazione ai fenomeni franosi, 2◦ Rapporto informativo dell’Unita Operativa 4.21 N del CNR–GNDCI. L’instabilita delle coltri piroclastiche delle dorsali carbonati che in Campania, Primi risulatati di uno studio interdisciplinare

  45. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  46. Viggiani G, Hall SA (2012) Full-field measurements in experimental geomechanics: historical perspective, current trends and recent results. ALERT Doctoral School, pp 3–68. http://www.alertgeomaterials.eu/internal/2012/school/2012_ALERT_school.pdf. Accessed 26 Oct 2017

  47. Vilar OM, Davies GI (2002) Collapse behavior analysis of a clayey sand using different testing procedures. Unsatur Soils 2:571–576

    Google Scholar 

  48. Vlahinić I, Andò E, Viggiani G, Andrade JE (2014) Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images. Granul Matter 16(1):9–21

    Article  Google Scholar 

  49. Wheeler SJ, Sivakumar V (1995) An elasto-plastic critical state framework for unsaturated soil. Géotechnique 45(1):35–53

    Article  Google Scholar 

  50. Wildenschild D, Sheppard AP (2013) X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour 51:217–246

    Article  Google Scholar 

Download references

Acknowledgements

This research activity was developed within the framework of different projects: (i) 2014–2015 Erasmus + European Project, (ii) Progetto FARB 2015 (cod. 154348) “Sperimentazione di laboratorio e modellazione costitutiva di terreni parzialmente saturi”, (iii) Progetto FARB 2016 (cod. 163001) “Analisi multi-scalare del comportamento meccanico di terreni non saturi”, (iv) 2015–2016 Galileo Project Campus France “Soil mechanical behaviour from grain to specimen scale laboratory testing: towards new sustainable mitigation works against flow-like landslides and similar phenomena related to climate change” Grant Nos. G15-110.

Funding

This research was partially supported by Geosintex s.r.l., Sandrigo (VI), Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabatino Cuomo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moscariello, M., Cuomo, S. & Salager, S. Capillary collapse of loose pyroclastic unsaturated sands characterized at grain scale. Acta Geotech. 13, 117–133 (2018). https://doi.org/10.1007/s11440-017-0603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0603-8

Keywords

Navigation